This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fpwwe2 . Given two well-orders <. X , R >. and <. Y , S >. of parts of A , one is an initial segment of the other. (The O C_ P hypothesis is in order to break the symmetry of X and Y .) (Contributed by Mario Carneiro, 15-May-2015) (Proof shortened by Peter Mazsa, 23-Sep-2022) (Revised by AV, 20-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fpwwe2.1 | |- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) } |
|
| fpwwe2.2 | |- ( ph -> A e. V ) |
||
| fpwwe2.3 | |- ( ( ph /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> ( x F r ) e. A ) |
||
| fpwwe2lem8.x | |- ( ph -> X W R ) |
||
| fpwwe2lem8.y | |- ( ph -> Y W S ) |
||
| fpwwe2lem8.m | |- M = OrdIso ( R , X ) |
||
| fpwwe2lem8.n | |- N = OrdIso ( S , Y ) |
||
| fpwwe2lem8.s | |- ( ph -> dom M C_ dom N ) |
||
| Assertion | fpwwe2lem8 | |- ( ph -> ( X C_ Y /\ R = ( S i^i ( Y X. X ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fpwwe2.1 | |- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) } |
|
| 2 | fpwwe2.2 | |- ( ph -> A e. V ) |
|
| 3 | fpwwe2.3 | |- ( ( ph /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> ( x F r ) e. A ) |
|
| 4 | fpwwe2lem8.x | |- ( ph -> X W R ) |
|
| 5 | fpwwe2lem8.y | |- ( ph -> Y W S ) |
|
| 6 | fpwwe2lem8.m | |- M = OrdIso ( R , X ) |
|
| 7 | fpwwe2lem8.n | |- N = OrdIso ( S , Y ) |
|
| 8 | fpwwe2lem8.s | |- ( ph -> dom M C_ dom N ) |
|
| 9 | 1 | relopabiv | |- Rel W |
| 10 | 9 | brrelex1i | |- ( X W R -> X e. _V ) |
| 11 | 4 10 | syl | |- ( ph -> X e. _V ) |
| 12 | 1 2 | fpwwe2lem2 | |- ( ph -> ( X W R <-> ( ( X C_ A /\ R C_ ( X X. X ) ) /\ ( R We X /\ A. y e. X [. ( `' R " { y } ) / u ]. ( u F ( R i^i ( u X. u ) ) ) = y ) ) ) ) |
| 13 | 4 12 | mpbid | |- ( ph -> ( ( X C_ A /\ R C_ ( X X. X ) ) /\ ( R We X /\ A. y e. X [. ( `' R " { y } ) / u ]. ( u F ( R i^i ( u X. u ) ) ) = y ) ) ) |
| 14 | 13 | simprld | |- ( ph -> R We X ) |
| 15 | 6 | oiiso | |- ( ( X e. _V /\ R We X ) -> M Isom _E , R ( dom M , X ) ) |
| 16 | 11 14 15 | syl2anc | |- ( ph -> M Isom _E , R ( dom M , X ) ) |
| 17 | isof1o | |- ( M Isom _E , R ( dom M , X ) -> M : dom M -1-1-onto-> X ) |
|
| 18 | f1ofo | |- ( M : dom M -1-1-onto-> X -> M : dom M -onto-> X ) |
|
| 19 | forn | |- ( M : dom M -onto-> X -> ran M = X ) |
|
| 20 | 16 17 18 19 | 4syl | |- ( ph -> ran M = X ) |
| 21 | 1 2 3 4 5 6 7 8 | fpwwe2lem7 | |- ( ph -> M = ( N |` dom M ) ) |
| 22 | 21 | rneqd | |- ( ph -> ran M = ran ( N |` dom M ) ) |
| 23 | 20 22 | eqtr3d | |- ( ph -> X = ran ( N |` dom M ) ) |
| 24 | df-ima | |- ( N " dom M ) = ran ( N |` dom M ) |
|
| 25 | 23 24 | eqtr4di | |- ( ph -> X = ( N " dom M ) ) |
| 26 | imassrn | |- ( N " dom M ) C_ ran N |
|
| 27 | 9 | brrelex1i | |- ( Y W S -> Y e. _V ) |
| 28 | 5 27 | syl | |- ( ph -> Y e. _V ) |
| 29 | 1 2 | fpwwe2lem2 | |- ( ph -> ( Y W S <-> ( ( Y C_ A /\ S C_ ( Y X. Y ) ) /\ ( S We Y /\ A. y e. Y [. ( `' S " { y } ) / u ]. ( u F ( S i^i ( u X. u ) ) ) = y ) ) ) ) |
| 30 | 5 29 | mpbid | |- ( ph -> ( ( Y C_ A /\ S C_ ( Y X. Y ) ) /\ ( S We Y /\ A. y e. Y [. ( `' S " { y } ) / u ]. ( u F ( S i^i ( u X. u ) ) ) = y ) ) ) |
| 31 | 30 | simprld | |- ( ph -> S We Y ) |
| 32 | 7 | oiiso | |- ( ( Y e. _V /\ S We Y ) -> N Isom _E , S ( dom N , Y ) ) |
| 33 | 28 31 32 | syl2anc | |- ( ph -> N Isom _E , S ( dom N , Y ) ) |
| 34 | isof1o | |- ( N Isom _E , S ( dom N , Y ) -> N : dom N -1-1-onto-> Y ) |
|
| 35 | f1ofo | |- ( N : dom N -1-1-onto-> Y -> N : dom N -onto-> Y ) |
|
| 36 | forn | |- ( N : dom N -onto-> Y -> ran N = Y ) |
|
| 37 | 33 34 35 36 | 4syl | |- ( ph -> ran N = Y ) |
| 38 | 26 37 | sseqtrid | |- ( ph -> ( N " dom M ) C_ Y ) |
| 39 | 25 38 | eqsstrd | |- ( ph -> X C_ Y ) |
| 40 | 13 | simplrd | |- ( ph -> R C_ ( X X. X ) ) |
| 41 | relxp | |- Rel ( X X. X ) |
|
| 42 | relss | |- ( R C_ ( X X. X ) -> ( Rel ( X X. X ) -> Rel R ) ) |
|
| 43 | 40 41 42 | mpisyl | |- ( ph -> Rel R ) |
| 44 | relinxp | |- Rel ( S i^i ( Y X. X ) ) |
|
| 45 | 43 44 | jctir | |- ( ph -> ( Rel R /\ Rel ( S i^i ( Y X. X ) ) ) ) |
| 46 | 40 | ssbrd | |- ( ph -> ( x R y -> x ( X X. X ) y ) ) |
| 47 | brxp | |- ( x ( X X. X ) y <-> ( x e. X /\ y e. X ) ) |
|
| 48 | 46 47 | imbitrdi | |- ( ph -> ( x R y -> ( x e. X /\ y e. X ) ) ) |
| 49 | brinxp2 | |- ( x ( S i^i ( Y X. X ) ) y <-> ( ( x e. Y /\ y e. X ) /\ x S y ) ) |
|
| 50 | isocnv | |- ( N Isom _E , S ( dom N , Y ) -> `' N Isom S , _E ( Y , dom N ) ) |
|
| 51 | 33 50 | syl | |- ( ph -> `' N Isom S , _E ( Y , dom N ) ) |
| 52 | 51 | adantr | |- ( ( ph /\ ( ( x e. Y /\ y e. X ) /\ x S y ) ) -> `' N Isom S , _E ( Y , dom N ) ) |
| 53 | isof1o | |- ( `' N Isom S , _E ( Y , dom N ) -> `' N : Y -1-1-onto-> dom N ) |
|
| 54 | f1ofn | |- ( `' N : Y -1-1-onto-> dom N -> `' N Fn Y ) |
|
| 55 | 52 53 54 | 3syl | |- ( ( ph /\ ( ( x e. Y /\ y e. X ) /\ x S y ) ) -> `' N Fn Y ) |
| 56 | simprll | |- ( ( ph /\ ( ( x e. Y /\ y e. X ) /\ x S y ) ) -> x e. Y ) |
|
| 57 | simprr | |- ( ( ph /\ ( ( x e. Y /\ y e. X ) /\ x S y ) ) -> x S y ) |
|
| 58 | 39 | adantr | |- ( ( ph /\ ( ( x e. Y /\ y e. X ) /\ x S y ) ) -> X C_ Y ) |
| 59 | simprlr | |- ( ( ph /\ ( ( x e. Y /\ y e. X ) /\ x S y ) ) -> y e. X ) |
|
| 60 | 58 59 | sseldd | |- ( ( ph /\ ( ( x e. Y /\ y e. X ) /\ x S y ) ) -> y e. Y ) |
| 61 | isorel | |- ( ( `' N Isom S , _E ( Y , dom N ) /\ ( x e. Y /\ y e. Y ) ) -> ( x S y <-> ( `' N ` x ) _E ( `' N ` y ) ) ) |
|
| 62 | 52 56 60 61 | syl12anc | |- ( ( ph /\ ( ( x e. Y /\ y e. X ) /\ x S y ) ) -> ( x S y <-> ( `' N ` x ) _E ( `' N ` y ) ) ) |
| 63 | 57 62 | mpbid | |- ( ( ph /\ ( ( x e. Y /\ y e. X ) /\ x S y ) ) -> ( `' N ` x ) _E ( `' N ` y ) ) |
| 64 | fvex | |- ( `' N ` y ) e. _V |
|
| 65 | 64 | epeli | |- ( ( `' N ` x ) _E ( `' N ` y ) <-> ( `' N ` x ) e. ( `' N ` y ) ) |
| 66 | 63 65 | sylib | |- ( ( ph /\ ( ( x e. Y /\ y e. X ) /\ x S y ) ) -> ( `' N ` x ) e. ( `' N ` y ) ) |
| 67 | 21 | adantr | |- ( ( ph /\ ( ( x e. Y /\ y e. X ) /\ x S y ) ) -> M = ( N |` dom M ) ) |
| 68 | 67 | cnveqd | |- ( ( ph /\ ( ( x e. Y /\ y e. X ) /\ x S y ) ) -> `' M = `' ( N |` dom M ) ) |
| 69 | fnfun | |- ( `' N Fn Y -> Fun `' N ) |
|
| 70 | funcnvres | |- ( Fun `' N -> `' ( N |` dom M ) = ( `' N |` ( N " dom M ) ) ) |
|
| 71 | 55 69 70 | 3syl | |- ( ( ph /\ ( ( x e. Y /\ y e. X ) /\ x S y ) ) -> `' ( N |` dom M ) = ( `' N |` ( N " dom M ) ) ) |
| 72 | 68 71 | eqtrd | |- ( ( ph /\ ( ( x e. Y /\ y e. X ) /\ x S y ) ) -> `' M = ( `' N |` ( N " dom M ) ) ) |
| 73 | 72 | fveq1d | |- ( ( ph /\ ( ( x e. Y /\ y e. X ) /\ x S y ) ) -> ( `' M ` y ) = ( ( `' N |` ( N " dom M ) ) ` y ) ) |
| 74 | 25 | adantr | |- ( ( ph /\ ( ( x e. Y /\ y e. X ) /\ x S y ) ) -> X = ( N " dom M ) ) |
| 75 | 59 74 | eleqtrd | |- ( ( ph /\ ( ( x e. Y /\ y e. X ) /\ x S y ) ) -> y e. ( N " dom M ) ) |
| 76 | 75 | fvresd | |- ( ( ph /\ ( ( x e. Y /\ y e. X ) /\ x S y ) ) -> ( ( `' N |` ( N " dom M ) ) ` y ) = ( `' N ` y ) ) |
| 77 | 73 76 | eqtrd | |- ( ( ph /\ ( ( x e. Y /\ y e. X ) /\ x S y ) ) -> ( `' M ` y ) = ( `' N ` y ) ) |
| 78 | isocnv | |- ( M Isom _E , R ( dom M , X ) -> `' M Isom R , _E ( X , dom M ) ) |
|
| 79 | isof1o | |- ( `' M Isom R , _E ( X , dom M ) -> `' M : X -1-1-onto-> dom M ) |
|
| 80 | f1of | |- ( `' M : X -1-1-onto-> dom M -> `' M : X --> dom M ) |
|
| 81 | 16 78 79 80 | 4syl | |- ( ph -> `' M : X --> dom M ) |
| 82 | 81 | adantr | |- ( ( ph /\ ( ( x e. Y /\ y e. X ) /\ x S y ) ) -> `' M : X --> dom M ) |
| 83 | 82 59 | ffvelcdmd | |- ( ( ph /\ ( ( x e. Y /\ y e. X ) /\ x S y ) ) -> ( `' M ` y ) e. dom M ) |
| 84 | 77 83 | eqeltrrd | |- ( ( ph /\ ( ( x e. Y /\ y e. X ) /\ x S y ) ) -> ( `' N ` y ) e. dom M ) |
| 85 | 6 | oicl | |- Ord dom M |
| 86 | ordtr1 | |- ( Ord dom M -> ( ( ( `' N ` x ) e. ( `' N ` y ) /\ ( `' N ` y ) e. dom M ) -> ( `' N ` x ) e. dom M ) ) |
|
| 87 | 85 86 | ax-mp | |- ( ( ( `' N ` x ) e. ( `' N ` y ) /\ ( `' N ` y ) e. dom M ) -> ( `' N ` x ) e. dom M ) |
| 88 | 66 84 87 | syl2anc | |- ( ( ph /\ ( ( x e. Y /\ y e. X ) /\ x S y ) ) -> ( `' N ` x ) e. dom M ) |
| 89 | 55 56 88 | elpreimad | |- ( ( ph /\ ( ( x e. Y /\ y e. X ) /\ x S y ) ) -> x e. ( `' `' N " dom M ) ) |
| 90 | imacnvcnv | |- ( `' `' N " dom M ) = ( N " dom M ) |
|
| 91 | 74 90 | eqtr4di | |- ( ( ph /\ ( ( x e. Y /\ y e. X ) /\ x S y ) ) -> X = ( `' `' N " dom M ) ) |
| 92 | 89 91 | eleqtrrd | |- ( ( ph /\ ( ( x e. Y /\ y e. X ) /\ x S y ) ) -> x e. X ) |
| 93 | 92 59 | jca | |- ( ( ph /\ ( ( x e. Y /\ y e. X ) /\ x S y ) ) -> ( x e. X /\ y e. X ) ) |
| 94 | 93 | ex | |- ( ph -> ( ( ( x e. Y /\ y e. X ) /\ x S y ) -> ( x e. X /\ y e. X ) ) ) |
| 95 | 49 94 | biimtrid | |- ( ph -> ( x ( S i^i ( Y X. X ) ) y -> ( x e. X /\ y e. X ) ) ) |
| 96 | 21 | adantr | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> M = ( N |` dom M ) ) |
| 97 | 96 | cnveqd | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> `' M = `' ( N |` dom M ) ) |
| 98 | 97 | fveq1d | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( `' M ` x ) = ( `' ( N |` dom M ) ` x ) ) |
| 99 | 97 | fveq1d | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( `' M ` y ) = ( `' ( N |` dom M ) ` y ) ) |
| 100 | 98 99 | breq12d | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( ( `' M ` x ) _E ( `' M ` y ) <-> ( `' ( N |` dom M ) ` x ) _E ( `' ( N |` dom M ) ` y ) ) ) |
| 101 | 16 78 | syl | |- ( ph -> `' M Isom R , _E ( X , dom M ) ) |
| 102 | isorel | |- ( ( `' M Isom R , _E ( X , dom M ) /\ ( x e. X /\ y e. X ) ) -> ( x R y <-> ( `' M ` x ) _E ( `' M ` y ) ) ) |
|
| 103 | 101 102 | sylan | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( x R y <-> ( `' M ` x ) _E ( `' M ` y ) ) ) |
| 104 | eqidd | |- ( ph -> ( N " dom M ) = ( N " dom M ) ) |
|
| 105 | isores3 | |- ( ( N Isom _E , S ( dom N , Y ) /\ dom M C_ dom N /\ ( N " dom M ) = ( N " dom M ) ) -> ( N |` dom M ) Isom _E , S ( dom M , ( N " dom M ) ) ) |
|
| 106 | 33 8 104 105 | syl3anc | |- ( ph -> ( N |` dom M ) Isom _E , S ( dom M , ( N " dom M ) ) ) |
| 107 | isocnv | |- ( ( N |` dom M ) Isom _E , S ( dom M , ( N " dom M ) ) -> `' ( N |` dom M ) Isom S , _E ( ( N " dom M ) , dom M ) ) |
|
| 108 | 106 107 | syl | |- ( ph -> `' ( N |` dom M ) Isom S , _E ( ( N " dom M ) , dom M ) ) |
| 109 | 108 | adantr | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> `' ( N |` dom M ) Isom S , _E ( ( N " dom M ) , dom M ) ) |
| 110 | simprl | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> x e. X ) |
|
| 111 | 25 | adantr | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> X = ( N " dom M ) ) |
| 112 | 110 111 | eleqtrd | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> x e. ( N " dom M ) ) |
| 113 | simprr | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> y e. X ) |
|
| 114 | 113 111 | eleqtrd | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> y e. ( N " dom M ) ) |
| 115 | isorel | |- ( ( `' ( N |` dom M ) Isom S , _E ( ( N " dom M ) , dom M ) /\ ( x e. ( N " dom M ) /\ y e. ( N " dom M ) ) ) -> ( x S y <-> ( `' ( N |` dom M ) ` x ) _E ( `' ( N |` dom M ) ` y ) ) ) |
|
| 116 | 109 112 114 115 | syl12anc | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( x S y <-> ( `' ( N |` dom M ) ` x ) _E ( `' ( N |` dom M ) ` y ) ) ) |
| 117 | 100 103 116 | 3bitr4d | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( x R y <-> x S y ) ) |
| 118 | 39 | sselda | |- ( ( ph /\ x e. X ) -> x e. Y ) |
| 119 | 118 | adantrr | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> x e. Y ) |
| 120 | 119 113 | jca | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( x e. Y /\ y e. X ) ) |
| 121 | 120 | biantrurd | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( x S y <-> ( ( x e. Y /\ y e. X ) /\ x S y ) ) ) |
| 122 | 121 49 | bitr4di | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( x S y <-> x ( S i^i ( Y X. X ) ) y ) ) |
| 123 | 117 122 | bitrd | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( x R y <-> x ( S i^i ( Y X. X ) ) y ) ) |
| 124 | 123 | ex | |- ( ph -> ( ( x e. X /\ y e. X ) -> ( x R y <-> x ( S i^i ( Y X. X ) ) y ) ) ) |
| 125 | 48 95 124 | pm5.21ndd | |- ( ph -> ( x R y <-> x ( S i^i ( Y X. X ) ) y ) ) |
| 126 | df-br | |- ( x R y <-> <. x , y >. e. R ) |
|
| 127 | df-br | |- ( x ( S i^i ( Y X. X ) ) y <-> <. x , y >. e. ( S i^i ( Y X. X ) ) ) |
|
| 128 | 125 126 127 | 3bitr3g | |- ( ph -> ( <. x , y >. e. R <-> <. x , y >. e. ( S i^i ( Y X. X ) ) ) ) |
| 129 | 128 | eqrelrdv2 | |- ( ( ( Rel R /\ Rel ( S i^i ( Y X. X ) ) ) /\ ph ) -> R = ( S i^i ( Y X. X ) ) ) |
| 130 | 45 129 | mpancom | |- ( ph -> R = ( S i^i ( Y X. X ) ) ) |
| 131 | 39 130 | jca | |- ( ph -> ( X C_ Y /\ R = ( S i^i ( Y X. X ) ) ) ) |