This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fpwwe2 . Show by induction that the two isometries M and N agree on their common domain. (Contributed by Mario Carneiro, 15-May-2015) (Proof shortened by Peter Mazsa, 23-Sep-2022) (Revised by AV, 20-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fpwwe2.1 | ⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) } | |
| fpwwe2.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| fpwwe2.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) | ||
| fpwwe2lem8.x | ⊢ ( 𝜑 → 𝑋 𝑊 𝑅 ) | ||
| fpwwe2lem8.y | ⊢ ( 𝜑 → 𝑌 𝑊 𝑆 ) | ||
| fpwwe2lem8.m | ⊢ 𝑀 = OrdIso ( 𝑅 , 𝑋 ) | ||
| fpwwe2lem8.n | ⊢ 𝑁 = OrdIso ( 𝑆 , 𝑌 ) | ||
| fpwwe2lem8.s | ⊢ ( 𝜑 → dom 𝑀 ⊆ dom 𝑁 ) | ||
| Assertion | fpwwe2lem7 | ⊢ ( 𝜑 → 𝑀 = ( 𝑁 ↾ dom 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fpwwe2.1 | ⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) } | |
| 2 | fpwwe2.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 3 | fpwwe2.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) | |
| 4 | fpwwe2lem8.x | ⊢ ( 𝜑 → 𝑋 𝑊 𝑅 ) | |
| 5 | fpwwe2lem8.y | ⊢ ( 𝜑 → 𝑌 𝑊 𝑆 ) | |
| 6 | fpwwe2lem8.m | ⊢ 𝑀 = OrdIso ( 𝑅 , 𝑋 ) | |
| 7 | fpwwe2lem8.n | ⊢ 𝑁 = OrdIso ( 𝑆 , 𝑌 ) | |
| 8 | fpwwe2lem8.s | ⊢ ( 𝜑 → dom 𝑀 ⊆ dom 𝑁 ) | |
| 9 | 6 | oif | ⊢ 𝑀 : dom 𝑀 ⟶ 𝑋 |
| 10 | ffn | ⊢ ( 𝑀 : dom 𝑀 ⟶ 𝑋 → 𝑀 Fn dom 𝑀 ) | |
| 11 | 9 10 | mp1i | ⊢ ( 𝜑 → 𝑀 Fn dom 𝑀 ) |
| 12 | 7 | oif | ⊢ 𝑁 : dom 𝑁 ⟶ 𝑌 |
| 13 | ffn | ⊢ ( 𝑁 : dom 𝑁 ⟶ 𝑌 → 𝑁 Fn dom 𝑁 ) | |
| 14 | 12 13 | mp1i | ⊢ ( 𝜑 → 𝑁 Fn dom 𝑁 ) |
| 15 | 14 8 | fnssresd | ⊢ ( 𝜑 → ( 𝑁 ↾ dom 𝑀 ) Fn dom 𝑀 ) |
| 16 | 6 | oicl | ⊢ Ord dom 𝑀 |
| 17 | ordelon | ⊢ ( ( Ord dom 𝑀 ∧ 𝑤 ∈ dom 𝑀 ) → 𝑤 ∈ On ) | |
| 18 | 16 17 | mpan | ⊢ ( 𝑤 ∈ dom 𝑀 → 𝑤 ∈ On ) |
| 19 | eleq1w | ⊢ ( 𝑤 = 𝑦 → ( 𝑤 ∈ dom 𝑀 ↔ 𝑦 ∈ dom 𝑀 ) ) | |
| 20 | fveq2 | ⊢ ( 𝑤 = 𝑦 → ( 𝑀 ‘ 𝑤 ) = ( 𝑀 ‘ 𝑦 ) ) | |
| 21 | fveq2 | ⊢ ( 𝑤 = 𝑦 → ( 𝑁 ‘ 𝑤 ) = ( 𝑁 ‘ 𝑦 ) ) | |
| 22 | 20 21 | eqeq12d | ⊢ ( 𝑤 = 𝑦 → ( ( 𝑀 ‘ 𝑤 ) = ( 𝑁 ‘ 𝑤 ) ↔ ( 𝑀 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) ) |
| 23 | 19 22 | imbi12d | ⊢ ( 𝑤 = 𝑦 → ( ( 𝑤 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑤 ) = ( 𝑁 ‘ 𝑤 ) ) ↔ ( 𝑦 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) ) ) |
| 24 | 23 | imbi2d | ⊢ ( 𝑤 = 𝑦 → ( ( 𝜑 → ( 𝑤 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑤 ) = ( 𝑁 ‘ 𝑤 ) ) ) ↔ ( 𝜑 → ( 𝑦 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
| 25 | r19.21v | ⊢ ( ∀ 𝑦 ∈ 𝑤 ( 𝜑 → ( 𝑦 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) ) ↔ ( 𝜑 → ∀ 𝑦 ∈ 𝑤 ( 𝑦 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) ) ) | |
| 26 | 16 | a1i | ⊢ ( 𝜑 → Ord dom 𝑀 ) |
| 27 | ordelss | ⊢ ( ( Ord dom 𝑀 ∧ 𝑤 ∈ dom 𝑀 ) → 𝑤 ⊆ dom 𝑀 ) | |
| 28 | 26 27 | sylan | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) → 𝑤 ⊆ dom 𝑀 ) |
| 29 | 28 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ 𝑦 ∈ 𝑤 ) → 𝑦 ∈ dom 𝑀 ) |
| 30 | pm2.27 | ⊢ ( 𝑦 ∈ dom 𝑀 → ( ( 𝑦 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) → ( 𝑀 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) ) | |
| 31 | 29 30 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ 𝑦 ∈ 𝑤 ) → ( ( 𝑦 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) → ( 𝑀 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) ) |
| 32 | 31 | ralimdva | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) → ( ∀ 𝑦 ∈ 𝑤 ( 𝑦 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) → ∀ 𝑦 ∈ 𝑤 ( 𝑀 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) ) |
| 33 | fnssres | ⊢ ( ( 𝑀 Fn dom 𝑀 ∧ 𝑤 ⊆ dom 𝑀 ) → ( 𝑀 ↾ 𝑤 ) Fn 𝑤 ) | |
| 34 | 11 28 33 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) → ( 𝑀 ↾ 𝑤 ) Fn 𝑤 ) |
| 35 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) → dom 𝑀 ⊆ dom 𝑁 ) |
| 36 | 28 35 | sstrd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) → 𝑤 ⊆ dom 𝑁 ) |
| 37 | fnssres | ⊢ ( ( 𝑁 Fn dom 𝑁 ∧ 𝑤 ⊆ dom 𝑁 ) → ( 𝑁 ↾ 𝑤 ) Fn 𝑤 ) | |
| 38 | 14 36 37 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) → ( 𝑁 ↾ 𝑤 ) Fn 𝑤 ) |
| 39 | eqfnfv | ⊢ ( ( ( 𝑀 ↾ 𝑤 ) Fn 𝑤 ∧ ( 𝑁 ↾ 𝑤 ) Fn 𝑤 ) → ( ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ↔ ∀ 𝑦 ∈ 𝑤 ( ( 𝑀 ↾ 𝑤 ) ‘ 𝑦 ) = ( ( 𝑁 ↾ 𝑤 ) ‘ 𝑦 ) ) ) | |
| 40 | 34 38 39 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) → ( ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ↔ ∀ 𝑦 ∈ 𝑤 ( ( 𝑀 ↾ 𝑤 ) ‘ 𝑦 ) = ( ( 𝑁 ↾ 𝑤 ) ‘ 𝑦 ) ) ) |
| 41 | fvres | ⊢ ( 𝑦 ∈ 𝑤 → ( ( 𝑀 ↾ 𝑤 ) ‘ 𝑦 ) = ( 𝑀 ‘ 𝑦 ) ) | |
| 42 | fvres | ⊢ ( 𝑦 ∈ 𝑤 → ( ( 𝑁 ↾ 𝑤 ) ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) | |
| 43 | 41 42 | eqeq12d | ⊢ ( 𝑦 ∈ 𝑤 → ( ( ( 𝑀 ↾ 𝑤 ) ‘ 𝑦 ) = ( ( 𝑁 ↾ 𝑤 ) ‘ 𝑦 ) ↔ ( 𝑀 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) ) |
| 44 | 43 | ralbiia | ⊢ ( ∀ 𝑦 ∈ 𝑤 ( ( 𝑀 ↾ 𝑤 ) ‘ 𝑦 ) = ( ( 𝑁 ↾ 𝑤 ) ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑤 ( 𝑀 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) |
| 45 | 40 44 | bitrdi | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) → ( ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ↔ ∀ 𝑦 ∈ 𝑤 ( 𝑀 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) ) |
| 46 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → 𝐴 ∈ 𝑉 ) |
| 47 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → 𝜑 ) | |
| 48 | 47 3 | sylan | ⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) |
| 49 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → 𝑋 𝑊 𝑅 ) |
| 50 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → 𝑌 𝑊 𝑆 ) |
| 51 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → 𝑤 ∈ dom 𝑀 ) | |
| 52 | 8 | sselda | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) → 𝑤 ∈ dom 𝑁 ) |
| 53 | 52 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → 𝑤 ∈ dom 𝑁 ) |
| 54 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) | |
| 55 | 1 46 48 49 50 6 7 51 53 54 | fpwwe2lem6 | ⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) ∧ 𝑦 𝑅 ( 𝑀 ‘ 𝑤 ) ) → ( 𝑦 𝑆 ( 𝑁 ‘ 𝑤 ) ∧ ( 𝑧 𝑅 ( 𝑀 ‘ 𝑤 ) → ( 𝑦 𝑅 𝑧 ↔ 𝑦 𝑆 𝑧 ) ) ) ) |
| 56 | 55 | simpld | ⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) ∧ 𝑦 𝑅 ( 𝑀 ‘ 𝑤 ) ) → 𝑦 𝑆 ( 𝑁 ‘ 𝑤 ) ) |
| 57 | 54 | eqcomd | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → ( 𝑁 ↾ 𝑤 ) = ( 𝑀 ↾ 𝑤 ) ) |
| 58 | 1 46 48 50 49 7 6 53 51 57 | fpwwe2lem6 | ⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) ∧ 𝑦 𝑆 ( 𝑁 ‘ 𝑤 ) ) → ( 𝑦 𝑅 ( 𝑀 ‘ 𝑤 ) ∧ ( 𝑧 𝑆 ( 𝑁 ‘ 𝑤 ) → ( 𝑦 𝑆 𝑧 ↔ 𝑦 𝑅 𝑧 ) ) ) ) |
| 59 | 58 | simpld | ⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) ∧ 𝑦 𝑆 ( 𝑁 ‘ 𝑤 ) ) → 𝑦 𝑅 ( 𝑀 ‘ 𝑤 ) ) |
| 60 | 56 59 | impbida | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → ( 𝑦 𝑅 ( 𝑀 ‘ 𝑤 ) ↔ 𝑦 𝑆 ( 𝑁 ‘ 𝑤 ) ) ) |
| 61 | fvex | ⊢ ( 𝑀 ‘ 𝑤 ) ∈ V | |
| 62 | vex | ⊢ 𝑦 ∈ V | |
| 63 | 62 | eliniseg | ⊢ ( ( 𝑀 ‘ 𝑤 ) ∈ V → ( 𝑦 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ↔ 𝑦 𝑅 ( 𝑀 ‘ 𝑤 ) ) ) |
| 64 | 61 63 | ax-mp | ⊢ ( 𝑦 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ↔ 𝑦 𝑅 ( 𝑀 ‘ 𝑤 ) ) |
| 65 | fvex | ⊢ ( 𝑁 ‘ 𝑤 ) ∈ V | |
| 66 | 62 | eliniseg | ⊢ ( ( 𝑁 ‘ 𝑤 ) ∈ V → ( 𝑦 ∈ ( ◡ 𝑆 “ { ( 𝑁 ‘ 𝑤 ) } ) ↔ 𝑦 𝑆 ( 𝑁 ‘ 𝑤 ) ) ) |
| 67 | 65 66 | ax-mp | ⊢ ( 𝑦 ∈ ( ◡ 𝑆 “ { ( 𝑁 ‘ 𝑤 ) } ) ↔ 𝑦 𝑆 ( 𝑁 ‘ 𝑤 ) ) |
| 68 | 60 64 67 | 3bitr4g | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → ( 𝑦 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ↔ 𝑦 ∈ ( ◡ 𝑆 “ { ( 𝑁 ‘ 𝑤 ) } ) ) ) |
| 69 | 68 | eqrdv | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) = ( ◡ 𝑆 “ { ( 𝑁 ‘ 𝑤 ) } ) ) |
| 70 | relinxp | ⊢ Rel ( 𝑅 ∩ ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) × ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ) | |
| 71 | relinxp | ⊢ Rel ( 𝑆 ∩ ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) × ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ) | |
| 72 | vex | ⊢ 𝑧 ∈ V | |
| 73 | 72 | eliniseg | ⊢ ( ( 𝑀 ‘ 𝑤 ) ∈ V → ( 𝑧 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ↔ 𝑧 𝑅 ( 𝑀 ‘ 𝑤 ) ) ) |
| 74 | 63 73 | anbi12d | ⊢ ( ( 𝑀 ‘ 𝑤 ) ∈ V → ( ( 𝑦 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ∧ 𝑧 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ↔ ( 𝑦 𝑅 ( 𝑀 ‘ 𝑤 ) ∧ 𝑧 𝑅 ( 𝑀 ‘ 𝑤 ) ) ) ) |
| 75 | 61 74 | ax-mp | ⊢ ( ( 𝑦 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ∧ 𝑧 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ↔ ( 𝑦 𝑅 ( 𝑀 ‘ 𝑤 ) ∧ 𝑧 𝑅 ( 𝑀 ‘ 𝑤 ) ) ) |
| 76 | 55 | simprd | ⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) ∧ 𝑦 𝑅 ( 𝑀 ‘ 𝑤 ) ) → ( 𝑧 𝑅 ( 𝑀 ‘ 𝑤 ) → ( 𝑦 𝑅 𝑧 ↔ 𝑦 𝑆 𝑧 ) ) ) |
| 77 | 76 | impr | ⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) ∧ ( 𝑦 𝑅 ( 𝑀 ‘ 𝑤 ) ∧ 𝑧 𝑅 ( 𝑀 ‘ 𝑤 ) ) ) → ( 𝑦 𝑅 𝑧 ↔ 𝑦 𝑆 𝑧 ) ) |
| 78 | 75 77 | sylan2b | ⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) ∧ ( 𝑦 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ∧ 𝑧 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ) → ( 𝑦 𝑅 𝑧 ↔ 𝑦 𝑆 𝑧 ) ) |
| 79 | 78 | pm5.32da | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → ( ( ( 𝑦 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ∧ 𝑧 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ∧ 𝑦 𝑅 𝑧 ) ↔ ( ( 𝑦 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ∧ 𝑧 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ∧ 𝑦 𝑆 𝑧 ) ) ) |
| 80 | df-br | ⊢ ( 𝑦 ( 𝑅 ∩ ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) × ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ) 𝑧 ↔ 〈 𝑦 , 𝑧 〉 ∈ ( 𝑅 ∩ ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) × ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ) ) | |
| 81 | brinxp2 | ⊢ ( 𝑦 ( 𝑅 ∩ ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) × ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ) 𝑧 ↔ ( ( 𝑦 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ∧ 𝑧 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ∧ 𝑦 𝑅 𝑧 ) ) | |
| 82 | 80 81 | bitr3i | ⊢ ( 〈 𝑦 , 𝑧 〉 ∈ ( 𝑅 ∩ ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) × ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ) ↔ ( ( 𝑦 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ∧ 𝑧 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ∧ 𝑦 𝑅 𝑧 ) ) |
| 83 | df-br | ⊢ ( 𝑦 ( 𝑆 ∩ ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) × ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ) 𝑧 ↔ 〈 𝑦 , 𝑧 〉 ∈ ( 𝑆 ∩ ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) × ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ) ) | |
| 84 | brinxp2 | ⊢ ( 𝑦 ( 𝑆 ∩ ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) × ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ) 𝑧 ↔ ( ( 𝑦 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ∧ 𝑧 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ∧ 𝑦 𝑆 𝑧 ) ) | |
| 85 | 83 84 | bitr3i | ⊢ ( 〈 𝑦 , 𝑧 〉 ∈ ( 𝑆 ∩ ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) × ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ) ↔ ( ( 𝑦 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ∧ 𝑧 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ∧ 𝑦 𝑆 𝑧 ) ) |
| 86 | 79 82 85 | 3bitr4g | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → ( 〈 𝑦 , 𝑧 〉 ∈ ( 𝑅 ∩ ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) × ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ) ↔ 〈 𝑦 , 𝑧 〉 ∈ ( 𝑆 ∩ ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) × ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ) ) ) |
| 87 | 70 71 86 | eqrelrdv | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → ( 𝑅 ∩ ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) × ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ) = ( 𝑆 ∩ ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) × ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ) ) |
| 88 | 69 | sqxpeqd | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) × ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) = ( ( ◡ 𝑆 “ { ( 𝑁 ‘ 𝑤 ) } ) × ( ◡ 𝑆 “ { ( 𝑁 ‘ 𝑤 ) } ) ) ) |
| 89 | 88 | ineq2d | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → ( 𝑆 ∩ ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) × ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ) = ( 𝑆 ∩ ( ( ◡ 𝑆 “ { ( 𝑁 ‘ 𝑤 ) } ) × ( ◡ 𝑆 “ { ( 𝑁 ‘ 𝑤 ) } ) ) ) ) |
| 90 | 87 89 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → ( 𝑅 ∩ ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) × ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ) = ( 𝑆 ∩ ( ( ◡ 𝑆 “ { ( 𝑁 ‘ 𝑤 ) } ) × ( ◡ 𝑆 “ { ( 𝑁 ‘ 𝑤 ) } ) ) ) ) |
| 91 | 69 90 | oveq12d | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) 𝐹 ( 𝑅 ∩ ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) × ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ) ) = ( ( ◡ 𝑆 “ { ( 𝑁 ‘ 𝑤 ) } ) 𝐹 ( 𝑆 ∩ ( ( ◡ 𝑆 “ { ( 𝑁 ‘ 𝑤 ) } ) × ( ◡ 𝑆 “ { ( 𝑁 ‘ 𝑤 ) } ) ) ) ) ) |
| 92 | 9 | ffvelcdmi | ⊢ ( 𝑤 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑤 ) ∈ 𝑋 ) |
| 93 | 92 | adantl | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) → ( 𝑀 ‘ 𝑤 ) ∈ 𝑋 ) |
| 94 | 93 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → ( 𝑀 ‘ 𝑤 ) ∈ 𝑋 ) |
| 95 | 1 2 4 | fpwwe2lem3 | ⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝑤 ) ∈ 𝑋 ) → ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) 𝐹 ( 𝑅 ∩ ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) × ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ) ) = ( 𝑀 ‘ 𝑤 ) ) |
| 96 | 47 94 95 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) 𝐹 ( 𝑅 ∩ ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) × ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ) ) = ( 𝑀 ‘ 𝑤 ) ) |
| 97 | 12 | ffvelcdmi | ⊢ ( 𝑤 ∈ dom 𝑁 → ( 𝑁 ‘ 𝑤 ) ∈ 𝑌 ) |
| 98 | 52 97 | syl | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) → ( 𝑁 ‘ 𝑤 ) ∈ 𝑌 ) |
| 99 | 98 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → ( 𝑁 ‘ 𝑤 ) ∈ 𝑌 ) |
| 100 | 1 2 5 | fpwwe2lem3 | ⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ 𝑤 ) ∈ 𝑌 ) → ( ( ◡ 𝑆 “ { ( 𝑁 ‘ 𝑤 ) } ) 𝐹 ( 𝑆 ∩ ( ( ◡ 𝑆 “ { ( 𝑁 ‘ 𝑤 ) } ) × ( ◡ 𝑆 “ { ( 𝑁 ‘ 𝑤 ) } ) ) ) ) = ( 𝑁 ‘ 𝑤 ) ) |
| 101 | 47 99 100 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → ( ( ◡ 𝑆 “ { ( 𝑁 ‘ 𝑤 ) } ) 𝐹 ( 𝑆 ∩ ( ( ◡ 𝑆 “ { ( 𝑁 ‘ 𝑤 ) } ) × ( ◡ 𝑆 “ { ( 𝑁 ‘ 𝑤 ) } ) ) ) ) = ( 𝑁 ‘ 𝑤 ) ) |
| 102 | 91 96 101 | 3eqtr3d | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → ( 𝑀 ‘ 𝑤 ) = ( 𝑁 ‘ 𝑤 ) ) |
| 103 | 102 | ex | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) → ( ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) → ( 𝑀 ‘ 𝑤 ) = ( 𝑁 ‘ 𝑤 ) ) ) |
| 104 | 45 103 | sylbird | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) → ( ∀ 𝑦 ∈ 𝑤 ( 𝑀 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) → ( 𝑀 ‘ 𝑤 ) = ( 𝑁 ‘ 𝑤 ) ) ) |
| 105 | 32 104 | syld | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) → ( ∀ 𝑦 ∈ 𝑤 ( 𝑦 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) → ( 𝑀 ‘ 𝑤 ) = ( 𝑁 ‘ 𝑤 ) ) ) |
| 106 | 105 | ex | ⊢ ( 𝜑 → ( 𝑤 ∈ dom 𝑀 → ( ∀ 𝑦 ∈ 𝑤 ( 𝑦 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) → ( 𝑀 ‘ 𝑤 ) = ( 𝑁 ‘ 𝑤 ) ) ) ) |
| 107 | 106 | com23 | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝑤 ( 𝑦 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) → ( 𝑤 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑤 ) = ( 𝑁 ‘ 𝑤 ) ) ) ) |
| 108 | 107 | a2i | ⊢ ( ( 𝜑 → ∀ 𝑦 ∈ 𝑤 ( 𝑦 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) ) → ( 𝜑 → ( 𝑤 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑤 ) = ( 𝑁 ‘ 𝑤 ) ) ) ) |
| 109 | 25 108 | sylbi | ⊢ ( ∀ 𝑦 ∈ 𝑤 ( 𝜑 → ( 𝑦 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) ) → ( 𝜑 → ( 𝑤 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑤 ) = ( 𝑁 ‘ 𝑤 ) ) ) ) |
| 110 | 109 | a1i | ⊢ ( 𝑤 ∈ On → ( ∀ 𝑦 ∈ 𝑤 ( 𝜑 → ( 𝑦 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) ) → ( 𝜑 → ( 𝑤 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑤 ) = ( 𝑁 ‘ 𝑤 ) ) ) ) ) |
| 111 | 24 110 | tfis2 | ⊢ ( 𝑤 ∈ On → ( 𝜑 → ( 𝑤 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑤 ) = ( 𝑁 ‘ 𝑤 ) ) ) ) |
| 112 | 111 | com3l | ⊢ ( 𝜑 → ( 𝑤 ∈ dom 𝑀 → ( 𝑤 ∈ On → ( 𝑀 ‘ 𝑤 ) = ( 𝑁 ‘ 𝑤 ) ) ) ) |
| 113 | 18 112 | mpdi | ⊢ ( 𝜑 → ( 𝑤 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑤 ) = ( 𝑁 ‘ 𝑤 ) ) ) |
| 114 | 113 | imp | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) → ( 𝑀 ‘ 𝑤 ) = ( 𝑁 ‘ 𝑤 ) ) |
| 115 | fvres | ⊢ ( 𝑤 ∈ dom 𝑀 → ( ( 𝑁 ↾ dom 𝑀 ) ‘ 𝑤 ) = ( 𝑁 ‘ 𝑤 ) ) | |
| 116 | 115 | adantl | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) → ( ( 𝑁 ↾ dom 𝑀 ) ‘ 𝑤 ) = ( 𝑁 ‘ 𝑤 ) ) |
| 117 | 114 116 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) → ( 𝑀 ‘ 𝑤 ) = ( ( 𝑁 ↾ dom 𝑀 ) ‘ 𝑤 ) ) |
| 118 | 11 15 117 | eqfnfvd | ⊢ ( 𝜑 → 𝑀 = ( 𝑁 ↾ dom 𝑀 ) ) |