This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fpwwe2 . (Contributed by Mario Carneiro, 18-May-2015) (Revised by AV, 20-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fpwwe2.1 | ⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) } | |
| fpwwe2.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| fpwwe2.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) | ||
| fpwwe2lem8.x | ⊢ ( 𝜑 → 𝑋 𝑊 𝑅 ) | ||
| fpwwe2lem8.y | ⊢ ( 𝜑 → 𝑌 𝑊 𝑆 ) | ||
| fpwwe2lem8.m | ⊢ 𝑀 = OrdIso ( 𝑅 , 𝑋 ) | ||
| fpwwe2lem8.n | ⊢ 𝑁 = OrdIso ( 𝑆 , 𝑌 ) | ||
| fpwwe2lem5.1 | ⊢ ( 𝜑 → 𝐵 ∈ dom 𝑀 ) | ||
| fpwwe2lem5.2 | ⊢ ( 𝜑 → 𝐵 ∈ dom 𝑁 ) | ||
| fpwwe2lem5.3 | ⊢ ( 𝜑 → ( 𝑀 ↾ 𝐵 ) = ( 𝑁 ↾ 𝐵 ) ) | ||
| Assertion | fpwwe2lem6 | ⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → ( 𝐶 𝑆 ( 𝑁 ‘ 𝐵 ) ∧ ( 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) → ( 𝐶 𝑅 𝐷 ↔ 𝐶 𝑆 𝐷 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fpwwe2.1 | ⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) } | |
| 2 | fpwwe2.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 3 | fpwwe2.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) | |
| 4 | fpwwe2lem8.x | ⊢ ( 𝜑 → 𝑋 𝑊 𝑅 ) | |
| 5 | fpwwe2lem8.y | ⊢ ( 𝜑 → 𝑌 𝑊 𝑆 ) | |
| 6 | fpwwe2lem8.m | ⊢ 𝑀 = OrdIso ( 𝑅 , 𝑋 ) | |
| 7 | fpwwe2lem8.n | ⊢ 𝑁 = OrdIso ( 𝑆 , 𝑌 ) | |
| 8 | fpwwe2lem5.1 | ⊢ ( 𝜑 → 𝐵 ∈ dom 𝑀 ) | |
| 9 | fpwwe2lem5.2 | ⊢ ( 𝜑 → 𝐵 ∈ dom 𝑁 ) | |
| 10 | fpwwe2lem5.3 | ⊢ ( 𝜑 → ( 𝑀 ↾ 𝐵 ) = ( 𝑁 ↾ 𝐵 ) ) | |
| 11 | 1 | relopabiv | ⊢ Rel 𝑊 |
| 12 | 11 | brrelex1i | ⊢ ( 𝑌 𝑊 𝑆 → 𝑌 ∈ V ) |
| 13 | 5 12 | syl | ⊢ ( 𝜑 → 𝑌 ∈ V ) |
| 14 | 1 2 | fpwwe2lem2 | ⊢ ( 𝜑 → ( 𝑌 𝑊 𝑆 ↔ ( ( 𝑌 ⊆ 𝐴 ∧ 𝑆 ⊆ ( 𝑌 × 𝑌 ) ) ∧ ( 𝑆 We 𝑌 ∧ ∀ 𝑦 ∈ 𝑌 [ ( ◡ 𝑆 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑆 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) ) |
| 15 | 5 14 | mpbid | ⊢ ( 𝜑 → ( ( 𝑌 ⊆ 𝐴 ∧ 𝑆 ⊆ ( 𝑌 × 𝑌 ) ) ∧ ( 𝑆 We 𝑌 ∧ ∀ 𝑦 ∈ 𝑌 [ ( ◡ 𝑆 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑆 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) |
| 16 | 15 | simprld | ⊢ ( 𝜑 → 𝑆 We 𝑌 ) |
| 17 | 7 | oiiso | ⊢ ( ( 𝑌 ∈ V ∧ 𝑆 We 𝑌 ) → 𝑁 Isom E , 𝑆 ( dom 𝑁 , 𝑌 ) ) |
| 18 | 13 16 17 | syl2anc | ⊢ ( 𝜑 → 𝑁 Isom E , 𝑆 ( dom 𝑁 , 𝑌 ) ) |
| 19 | 18 | adantr | ⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → 𝑁 Isom E , 𝑆 ( dom 𝑁 , 𝑌 ) ) |
| 20 | isof1o | ⊢ ( 𝑁 Isom E , 𝑆 ( dom 𝑁 , 𝑌 ) → 𝑁 : dom 𝑁 –1-1-onto→ 𝑌 ) | |
| 21 | 19 20 | syl | ⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → 𝑁 : dom 𝑁 –1-1-onto→ 𝑌 ) |
| 22 | 1 2 3 4 5 6 7 8 9 10 | fpwwe2lem5 | ⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → ( 𝐶 ∈ 𝑋 ∧ 𝐶 ∈ 𝑌 ∧ ( ◡ 𝑀 ‘ 𝐶 ) = ( ◡ 𝑁 ‘ 𝐶 ) ) ) |
| 23 | 22 | simp2d | ⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → 𝐶 ∈ 𝑌 ) |
| 24 | f1ocnvfv2 | ⊢ ( ( 𝑁 : dom 𝑁 –1-1-onto→ 𝑌 ∧ 𝐶 ∈ 𝑌 ) → ( 𝑁 ‘ ( ◡ 𝑁 ‘ 𝐶 ) ) = 𝐶 ) | |
| 25 | 21 23 24 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → ( 𝑁 ‘ ( ◡ 𝑁 ‘ 𝐶 ) ) = 𝐶 ) |
| 26 | 22 | simp3d | ⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → ( ◡ 𝑀 ‘ 𝐶 ) = ( ◡ 𝑁 ‘ 𝐶 ) ) |
| 27 | 11 | brrelex1i | ⊢ ( 𝑋 𝑊 𝑅 → 𝑋 ∈ V ) |
| 28 | 4 27 | syl | ⊢ ( 𝜑 → 𝑋 ∈ V ) |
| 29 | 1 2 | fpwwe2lem2 | ⊢ ( 𝜑 → ( 𝑋 𝑊 𝑅 ↔ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( 𝑅 We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 [ ( ◡ 𝑅 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) ) |
| 30 | 4 29 | mpbid | ⊢ ( 𝜑 → ( ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( 𝑅 We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 [ ( ◡ 𝑅 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) |
| 31 | 30 | simprld | ⊢ ( 𝜑 → 𝑅 We 𝑋 ) |
| 32 | 6 | oiiso | ⊢ ( ( 𝑋 ∈ V ∧ 𝑅 We 𝑋 ) → 𝑀 Isom E , 𝑅 ( dom 𝑀 , 𝑋 ) ) |
| 33 | 28 31 32 | syl2anc | ⊢ ( 𝜑 → 𝑀 Isom E , 𝑅 ( dom 𝑀 , 𝑋 ) ) |
| 34 | 33 | adantr | ⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → 𝑀 Isom E , 𝑅 ( dom 𝑀 , 𝑋 ) ) |
| 35 | isof1o | ⊢ ( 𝑀 Isom E , 𝑅 ( dom 𝑀 , 𝑋 ) → 𝑀 : dom 𝑀 –1-1-onto→ 𝑋 ) | |
| 36 | 34 35 | syl | ⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → 𝑀 : dom 𝑀 –1-1-onto→ 𝑋 ) |
| 37 | 22 | simp1d | ⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → 𝐶 ∈ 𝑋 ) |
| 38 | f1ocnvfv2 | ⊢ ( ( 𝑀 : dom 𝑀 –1-1-onto→ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝑀 ‘ ( ◡ 𝑀 ‘ 𝐶 ) ) = 𝐶 ) | |
| 39 | 36 37 38 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → ( 𝑀 ‘ ( ◡ 𝑀 ‘ 𝐶 ) ) = 𝐶 ) |
| 40 | simpr | ⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) | |
| 41 | 39 40 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → ( 𝑀 ‘ ( ◡ 𝑀 ‘ 𝐶 ) ) 𝑅 ( 𝑀 ‘ 𝐵 ) ) |
| 42 | f1ocnv | ⊢ ( 𝑀 : dom 𝑀 –1-1-onto→ 𝑋 → ◡ 𝑀 : 𝑋 –1-1-onto→ dom 𝑀 ) | |
| 43 | f1of | ⊢ ( ◡ 𝑀 : 𝑋 –1-1-onto→ dom 𝑀 → ◡ 𝑀 : 𝑋 ⟶ dom 𝑀 ) | |
| 44 | 36 42 43 | 3syl | ⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → ◡ 𝑀 : 𝑋 ⟶ dom 𝑀 ) |
| 45 | 44 37 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → ( ◡ 𝑀 ‘ 𝐶 ) ∈ dom 𝑀 ) |
| 46 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → 𝐵 ∈ dom 𝑀 ) |
| 47 | isorel | ⊢ ( ( 𝑀 Isom E , 𝑅 ( dom 𝑀 , 𝑋 ) ∧ ( ( ◡ 𝑀 ‘ 𝐶 ) ∈ dom 𝑀 ∧ 𝐵 ∈ dom 𝑀 ) ) → ( ( ◡ 𝑀 ‘ 𝐶 ) E 𝐵 ↔ ( 𝑀 ‘ ( ◡ 𝑀 ‘ 𝐶 ) ) 𝑅 ( 𝑀 ‘ 𝐵 ) ) ) | |
| 48 | 34 45 46 47 | syl12anc | ⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → ( ( ◡ 𝑀 ‘ 𝐶 ) E 𝐵 ↔ ( 𝑀 ‘ ( ◡ 𝑀 ‘ 𝐶 ) ) 𝑅 ( 𝑀 ‘ 𝐵 ) ) ) |
| 49 | 41 48 | mpbird | ⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → ( ◡ 𝑀 ‘ 𝐶 ) E 𝐵 ) |
| 50 | 26 49 | eqbrtrrd | ⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → ( ◡ 𝑁 ‘ 𝐶 ) E 𝐵 ) |
| 51 | f1ocnv | ⊢ ( 𝑁 : dom 𝑁 –1-1-onto→ 𝑌 → ◡ 𝑁 : 𝑌 –1-1-onto→ dom 𝑁 ) | |
| 52 | f1of | ⊢ ( ◡ 𝑁 : 𝑌 –1-1-onto→ dom 𝑁 → ◡ 𝑁 : 𝑌 ⟶ dom 𝑁 ) | |
| 53 | 21 51 52 | 3syl | ⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → ◡ 𝑁 : 𝑌 ⟶ dom 𝑁 ) |
| 54 | 53 23 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → ( ◡ 𝑁 ‘ 𝐶 ) ∈ dom 𝑁 ) |
| 55 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → 𝐵 ∈ dom 𝑁 ) |
| 56 | isorel | ⊢ ( ( 𝑁 Isom E , 𝑆 ( dom 𝑁 , 𝑌 ) ∧ ( ( ◡ 𝑁 ‘ 𝐶 ) ∈ dom 𝑁 ∧ 𝐵 ∈ dom 𝑁 ) ) → ( ( ◡ 𝑁 ‘ 𝐶 ) E 𝐵 ↔ ( 𝑁 ‘ ( ◡ 𝑁 ‘ 𝐶 ) ) 𝑆 ( 𝑁 ‘ 𝐵 ) ) ) | |
| 57 | 19 54 55 56 | syl12anc | ⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → ( ( ◡ 𝑁 ‘ 𝐶 ) E 𝐵 ↔ ( 𝑁 ‘ ( ◡ 𝑁 ‘ 𝐶 ) ) 𝑆 ( 𝑁 ‘ 𝐵 ) ) ) |
| 58 | 50 57 | mpbid | ⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → ( 𝑁 ‘ ( ◡ 𝑁 ‘ 𝐶 ) ) 𝑆 ( 𝑁 ‘ 𝐵 ) ) |
| 59 | 25 58 | eqbrtrrd | ⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → 𝐶 𝑆 ( 𝑁 ‘ 𝐵 ) ) |
| 60 | 26 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ∧ 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) ) ) → ( ◡ 𝑀 ‘ 𝐶 ) = ( ◡ 𝑁 ‘ 𝐶 ) ) |
| 61 | 1 2 3 4 5 6 7 8 9 10 | fpwwe2lem5 | ⊢ ( ( 𝜑 ∧ 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) ) → ( 𝐷 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ∧ ( ◡ 𝑀 ‘ 𝐷 ) = ( ◡ 𝑁 ‘ 𝐷 ) ) ) |
| 62 | 61 | simp3d | ⊢ ( ( 𝜑 ∧ 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) ) → ( ◡ 𝑀 ‘ 𝐷 ) = ( ◡ 𝑁 ‘ 𝐷 ) ) |
| 63 | 62 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ∧ 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) ) ) → ( ◡ 𝑀 ‘ 𝐷 ) = ( ◡ 𝑁 ‘ 𝐷 ) ) |
| 64 | 60 63 | breq12d | ⊢ ( ( 𝜑 ∧ ( 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ∧ 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) ) ) → ( ( ◡ 𝑀 ‘ 𝐶 ) E ( ◡ 𝑀 ‘ 𝐷 ) ↔ ( ◡ 𝑁 ‘ 𝐶 ) E ( ◡ 𝑁 ‘ 𝐷 ) ) ) |
| 65 | 33 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ∧ 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) ) ) → 𝑀 Isom E , 𝑅 ( dom 𝑀 , 𝑋 ) ) |
| 66 | isocnv | ⊢ ( 𝑀 Isom E , 𝑅 ( dom 𝑀 , 𝑋 ) → ◡ 𝑀 Isom 𝑅 , E ( 𝑋 , dom 𝑀 ) ) | |
| 67 | 65 66 | syl | ⊢ ( ( 𝜑 ∧ ( 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ∧ 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) ) ) → ◡ 𝑀 Isom 𝑅 , E ( 𝑋 , dom 𝑀 ) ) |
| 68 | 37 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ∧ 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) ) ) → 𝐶 ∈ 𝑋 ) |
| 69 | 30 | simplrd | ⊢ ( 𝜑 → 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) |
| 70 | 69 | ssbrd | ⊢ ( 𝜑 → ( 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) → 𝐷 ( 𝑋 × 𝑋 ) ( 𝑀 ‘ 𝐵 ) ) ) |
| 71 | 70 | imp | ⊢ ( ( 𝜑 ∧ 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) ) → 𝐷 ( 𝑋 × 𝑋 ) ( 𝑀 ‘ 𝐵 ) ) |
| 72 | brxp | ⊢ ( 𝐷 ( 𝑋 × 𝑋 ) ( 𝑀 ‘ 𝐵 ) ↔ ( 𝐷 ∈ 𝑋 ∧ ( 𝑀 ‘ 𝐵 ) ∈ 𝑋 ) ) | |
| 73 | 72 | simplbi | ⊢ ( 𝐷 ( 𝑋 × 𝑋 ) ( 𝑀 ‘ 𝐵 ) → 𝐷 ∈ 𝑋 ) |
| 74 | 71 73 | syl | ⊢ ( ( 𝜑 ∧ 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) ) → 𝐷 ∈ 𝑋 ) |
| 75 | 74 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ∧ 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) ) ) → 𝐷 ∈ 𝑋 ) |
| 76 | isorel | ⊢ ( ( ◡ 𝑀 Isom 𝑅 , E ( 𝑋 , dom 𝑀 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → ( 𝐶 𝑅 𝐷 ↔ ( ◡ 𝑀 ‘ 𝐶 ) E ( ◡ 𝑀 ‘ 𝐷 ) ) ) | |
| 77 | 67 68 75 76 | syl12anc | ⊢ ( ( 𝜑 ∧ ( 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ∧ 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) ) ) → ( 𝐶 𝑅 𝐷 ↔ ( ◡ 𝑀 ‘ 𝐶 ) E ( ◡ 𝑀 ‘ 𝐷 ) ) ) |
| 78 | 18 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ∧ 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) ) ) → 𝑁 Isom E , 𝑆 ( dom 𝑁 , 𝑌 ) ) |
| 79 | isocnv | ⊢ ( 𝑁 Isom E , 𝑆 ( dom 𝑁 , 𝑌 ) → ◡ 𝑁 Isom 𝑆 , E ( 𝑌 , dom 𝑁 ) ) | |
| 80 | 78 79 | syl | ⊢ ( ( 𝜑 ∧ ( 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ∧ 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) ) ) → ◡ 𝑁 Isom 𝑆 , E ( 𝑌 , dom 𝑁 ) ) |
| 81 | 23 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ∧ 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) ) ) → 𝐶 ∈ 𝑌 ) |
| 82 | 61 | simp2d | ⊢ ( ( 𝜑 ∧ 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) ) → 𝐷 ∈ 𝑌 ) |
| 83 | 82 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ∧ 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) ) ) → 𝐷 ∈ 𝑌 ) |
| 84 | isorel | ⊢ ( ( ◡ 𝑁 Isom 𝑆 , E ( 𝑌 , dom 𝑁 ) ∧ ( 𝐶 ∈ 𝑌 ∧ 𝐷 ∈ 𝑌 ) ) → ( 𝐶 𝑆 𝐷 ↔ ( ◡ 𝑁 ‘ 𝐶 ) E ( ◡ 𝑁 ‘ 𝐷 ) ) ) | |
| 85 | 80 81 83 84 | syl12anc | ⊢ ( ( 𝜑 ∧ ( 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ∧ 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) ) ) → ( 𝐶 𝑆 𝐷 ↔ ( ◡ 𝑁 ‘ 𝐶 ) E ( ◡ 𝑁 ‘ 𝐷 ) ) ) |
| 86 | 64 77 85 | 3bitr4d | ⊢ ( ( 𝜑 ∧ ( 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ∧ 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) ) ) → ( 𝐶 𝑅 𝐷 ↔ 𝐶 𝑆 𝐷 ) ) |
| 87 | 86 | expr | ⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → ( 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) → ( 𝐶 𝑅 𝐷 ↔ 𝐶 𝑆 𝐷 ) ) ) |
| 88 | 59 87 | jca | ⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → ( 𝐶 𝑆 ( 𝑁 ‘ 𝐵 ) ∧ ( 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) → ( 𝐶 𝑅 𝐷 ↔ 𝐶 𝑆 𝐷 ) ) ) ) |