This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for function equality in terms of vanishing of the composition with the converse.EDITORIAL: Is there a relation-algebraic proof of this? (Contributed by Stefan O'Rear, 12-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | foeqcnvco | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) → ( 𝐹 = 𝐺 ↔ ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fococnv2 | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ( 𝐹 ∘ ◡ 𝐹 ) = ( I ↾ 𝐵 ) ) | |
| 2 | cnveq | ⊢ ( 𝐹 = 𝐺 → ◡ 𝐹 = ◡ 𝐺 ) | |
| 3 | 2 | coeq2d | ⊢ ( 𝐹 = 𝐺 → ( 𝐹 ∘ ◡ 𝐹 ) = ( 𝐹 ∘ ◡ 𝐺 ) ) |
| 4 | 3 | eqeq1d | ⊢ ( 𝐹 = 𝐺 → ( ( 𝐹 ∘ ◡ 𝐹 ) = ( I ↾ 𝐵 ) ↔ ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) ) |
| 5 | 1 4 | syl5ibcom | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ( 𝐹 = 𝐺 → ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) ) |
| 6 | 5 | adantr | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) → ( 𝐹 = 𝐺 → ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) ) |
| 7 | fofn | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → 𝐹 Fn 𝐴 ) | |
| 8 | 7 | ad2antrr | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) → 𝐹 Fn 𝐴 ) |
| 9 | fofn | ⊢ ( 𝐺 : 𝐴 –onto→ 𝐵 → 𝐺 Fn 𝐴 ) | |
| 10 | 9 | ad2antlr | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) → 𝐺 Fn 𝐴 ) |
| 11 | 9 | adantl | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) → 𝐺 Fn 𝐴 ) |
| 12 | fnopfv | ⊢ ( ( 𝐺 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → 〈 𝑥 , ( 𝐺 ‘ 𝑥 ) 〉 ∈ 𝐺 ) | |
| 13 | 11 12 | sylan | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 〈 𝑥 , ( 𝐺 ‘ 𝑥 ) 〉 ∈ 𝐺 ) |
| 14 | fvex | ⊢ ( 𝐺 ‘ 𝑥 ) ∈ V | |
| 15 | vex | ⊢ 𝑥 ∈ V | |
| 16 | 14 15 | brcnv | ⊢ ( ( 𝐺 ‘ 𝑥 ) ◡ 𝐺 𝑥 ↔ 𝑥 𝐺 ( 𝐺 ‘ 𝑥 ) ) |
| 17 | df-br | ⊢ ( 𝑥 𝐺 ( 𝐺 ‘ 𝑥 ) ↔ 〈 𝑥 , ( 𝐺 ‘ 𝑥 ) 〉 ∈ 𝐺 ) | |
| 18 | 16 17 | bitri | ⊢ ( ( 𝐺 ‘ 𝑥 ) ◡ 𝐺 𝑥 ↔ 〈 𝑥 , ( 𝐺 ‘ 𝑥 ) 〉 ∈ 𝐺 ) |
| 19 | 13 18 | sylibr | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) ◡ 𝐺 𝑥 ) |
| 20 | 7 | adantr | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) → 𝐹 Fn 𝐴 ) |
| 21 | fnopfv | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ∈ 𝐹 ) | |
| 22 | 20 21 | sylan | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ∈ 𝐹 ) |
| 23 | df-br | ⊢ ( 𝑥 𝐹 ( 𝐹 ‘ 𝑥 ) ↔ 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ∈ 𝐹 ) | |
| 24 | 22 23 | sylibr | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 𝐹 ( 𝐹 ‘ 𝑥 ) ) |
| 25 | breq2 | ⊢ ( 𝑦 = 𝑥 → ( ( 𝐺 ‘ 𝑥 ) ◡ 𝐺 𝑦 ↔ ( 𝐺 ‘ 𝑥 ) ◡ 𝐺 𝑥 ) ) | |
| 26 | breq1 | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 𝐹 ( 𝐹 ‘ 𝑥 ) ↔ 𝑥 𝐹 ( 𝐹 ‘ 𝑥 ) ) ) | |
| 27 | 25 26 | anbi12d | ⊢ ( 𝑦 = 𝑥 → ( ( ( 𝐺 ‘ 𝑥 ) ◡ 𝐺 𝑦 ∧ 𝑦 𝐹 ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( 𝐺 ‘ 𝑥 ) ◡ 𝐺 𝑥 ∧ 𝑥 𝐹 ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 28 | 15 27 | spcev | ⊢ ( ( ( 𝐺 ‘ 𝑥 ) ◡ 𝐺 𝑥 ∧ 𝑥 𝐹 ( 𝐹 ‘ 𝑥 ) ) → ∃ 𝑦 ( ( 𝐺 ‘ 𝑥 ) ◡ 𝐺 𝑦 ∧ 𝑦 𝐹 ( 𝐹 ‘ 𝑥 ) ) ) |
| 29 | 19 24 28 | syl2anc | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ( ( 𝐺 ‘ 𝑥 ) ◡ 𝐺 𝑦 ∧ 𝑦 𝐹 ( 𝐹 ‘ 𝑥 ) ) ) |
| 30 | fvex | ⊢ ( 𝐹 ‘ 𝑥 ) ∈ V | |
| 31 | 14 30 | brco | ⊢ ( ( 𝐺 ‘ 𝑥 ) ( 𝐹 ∘ ◡ 𝐺 ) ( 𝐹 ‘ 𝑥 ) ↔ ∃ 𝑦 ( ( 𝐺 ‘ 𝑥 ) ◡ 𝐺 𝑦 ∧ 𝑦 𝐹 ( 𝐹 ‘ 𝑥 ) ) ) |
| 32 | 29 31 | sylibr | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) ( 𝐹 ∘ ◡ 𝐺 ) ( 𝐹 ‘ 𝑥 ) ) |
| 33 | 32 | adantlr | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) ( 𝐹 ∘ ◡ 𝐺 ) ( 𝐹 ‘ 𝑥 ) ) |
| 34 | breq | ⊢ ( ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) → ( ( 𝐺 ‘ 𝑥 ) ( 𝐹 ∘ ◡ 𝐺 ) ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐺 ‘ 𝑥 ) ( I ↾ 𝐵 ) ( 𝐹 ‘ 𝑥 ) ) ) | |
| 35 | 34 | ad2antlr | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑥 ) ( 𝐹 ∘ ◡ 𝐺 ) ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐺 ‘ 𝑥 ) ( I ↾ 𝐵 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 36 | 33 35 | mpbid | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) ( I ↾ 𝐵 ) ( 𝐹 ‘ 𝑥 ) ) |
| 37 | fof | ⊢ ( 𝐺 : 𝐴 –onto→ 𝐵 → 𝐺 : 𝐴 ⟶ 𝐵 ) | |
| 38 | 37 | adantl | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) → 𝐺 : 𝐴 ⟶ 𝐵 ) |
| 39 | 38 | ffvelcdmda | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝐵 ) |
| 40 | fof | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 41 | 40 | adantr | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 42 | 41 | ffvelcdmda | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
| 43 | resieq | ⊢ ( ( ( 𝐺 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) → ( ( 𝐺 ‘ 𝑥 ) ( I ↾ 𝐵 ) ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐺 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) ) | |
| 44 | 39 42 43 | syl2anc | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑥 ) ( I ↾ 𝐵 ) ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐺 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) ) |
| 45 | 44 | adantlr | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑥 ) ( I ↾ 𝐵 ) ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐺 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) ) |
| 46 | 36 45 | mpbid | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 47 | 46 | eqcomd | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 48 | 8 10 47 | eqfnfvd | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) → 𝐹 = 𝐺 ) |
| 49 | 48 | ex | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) → ( ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) → 𝐹 = 𝐺 ) ) |
| 50 | 6 49 | impbid | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) → ( 𝐹 = 𝐺 ↔ ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) ) |