This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A restricted identity relation is equivalent to equality in its domain. (Contributed by NM, 30-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resieq | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) → ( 𝐵 ( I ↾ 𝐴 ) 𝐶 ↔ 𝐵 = 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 | ⊢ ( 𝑥 = 𝐶 → ( 𝐵 ( I ↾ 𝐴 ) 𝑥 ↔ 𝐵 ( I ↾ 𝐴 ) 𝐶 ) ) | |
| 2 | eqeq2 | ⊢ ( 𝑥 = 𝐶 → ( 𝐵 = 𝑥 ↔ 𝐵 = 𝐶 ) ) | |
| 3 | 1 2 | bibi12d | ⊢ ( 𝑥 = 𝐶 → ( ( 𝐵 ( I ↾ 𝐴 ) 𝑥 ↔ 𝐵 = 𝑥 ) ↔ ( 𝐵 ( I ↾ 𝐴 ) 𝐶 ↔ 𝐵 = 𝐶 ) ) ) |
| 4 | 3 | imbi2d | ⊢ ( 𝑥 = 𝐶 → ( ( 𝐵 ∈ 𝐴 → ( 𝐵 ( I ↾ 𝐴 ) 𝑥 ↔ 𝐵 = 𝑥 ) ) ↔ ( 𝐵 ∈ 𝐴 → ( 𝐵 ( I ↾ 𝐴 ) 𝐶 ↔ 𝐵 = 𝐶 ) ) ) ) |
| 5 | vex | ⊢ 𝑥 ∈ V | |
| 6 | 5 | opres | ⊢ ( 𝐵 ∈ 𝐴 → ( 〈 𝐵 , 𝑥 〉 ∈ ( I ↾ 𝐴 ) ↔ 〈 𝐵 , 𝑥 〉 ∈ I ) ) |
| 7 | df-br | ⊢ ( 𝐵 ( I ↾ 𝐴 ) 𝑥 ↔ 〈 𝐵 , 𝑥 〉 ∈ ( I ↾ 𝐴 ) ) | |
| 8 | 5 | ideq | ⊢ ( 𝐵 I 𝑥 ↔ 𝐵 = 𝑥 ) |
| 9 | df-br | ⊢ ( 𝐵 I 𝑥 ↔ 〈 𝐵 , 𝑥 〉 ∈ I ) | |
| 10 | 8 9 | bitr3i | ⊢ ( 𝐵 = 𝑥 ↔ 〈 𝐵 , 𝑥 〉 ∈ I ) |
| 11 | 6 7 10 | 3bitr4g | ⊢ ( 𝐵 ∈ 𝐴 → ( 𝐵 ( I ↾ 𝐴 ) 𝑥 ↔ 𝐵 = 𝑥 ) ) |
| 12 | 4 11 | vtoclg | ⊢ ( 𝐶 ∈ 𝐴 → ( 𝐵 ∈ 𝐴 → ( 𝐵 ( I ↾ 𝐴 ) 𝐶 ↔ 𝐵 = 𝐶 ) ) ) |
| 13 | 12 | impcom | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) → ( 𝐵 ( I ↾ 𝐴 ) 𝐶 ↔ 𝐵 = 𝐶 ) ) |