This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for function equality in terms of vanishing of the composition with the converse.EDITORIAL: Is there a relation-algebraic proof of this? (Contributed by Stefan O'Rear, 12-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | foeqcnvco | |- ( ( F : A -onto-> B /\ G : A -onto-> B ) -> ( F = G <-> ( F o. `' G ) = ( _I |` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fococnv2 | |- ( F : A -onto-> B -> ( F o. `' F ) = ( _I |` B ) ) |
|
| 2 | cnveq | |- ( F = G -> `' F = `' G ) |
|
| 3 | 2 | coeq2d | |- ( F = G -> ( F o. `' F ) = ( F o. `' G ) ) |
| 4 | 3 | eqeq1d | |- ( F = G -> ( ( F o. `' F ) = ( _I |` B ) <-> ( F o. `' G ) = ( _I |` B ) ) ) |
| 5 | 1 4 | syl5ibcom | |- ( F : A -onto-> B -> ( F = G -> ( F o. `' G ) = ( _I |` B ) ) ) |
| 6 | 5 | adantr | |- ( ( F : A -onto-> B /\ G : A -onto-> B ) -> ( F = G -> ( F o. `' G ) = ( _I |` B ) ) ) |
| 7 | fofn | |- ( F : A -onto-> B -> F Fn A ) |
|
| 8 | 7 | ad2antrr | |- ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ ( F o. `' G ) = ( _I |` B ) ) -> F Fn A ) |
| 9 | fofn | |- ( G : A -onto-> B -> G Fn A ) |
|
| 10 | 9 | ad2antlr | |- ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ ( F o. `' G ) = ( _I |` B ) ) -> G Fn A ) |
| 11 | 9 | adantl | |- ( ( F : A -onto-> B /\ G : A -onto-> B ) -> G Fn A ) |
| 12 | fnopfv | |- ( ( G Fn A /\ x e. A ) -> <. x , ( G ` x ) >. e. G ) |
|
| 13 | 11 12 | sylan | |- ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ x e. A ) -> <. x , ( G ` x ) >. e. G ) |
| 14 | fvex | |- ( G ` x ) e. _V |
|
| 15 | vex | |- x e. _V |
|
| 16 | 14 15 | brcnv | |- ( ( G ` x ) `' G x <-> x G ( G ` x ) ) |
| 17 | df-br | |- ( x G ( G ` x ) <-> <. x , ( G ` x ) >. e. G ) |
|
| 18 | 16 17 | bitri | |- ( ( G ` x ) `' G x <-> <. x , ( G ` x ) >. e. G ) |
| 19 | 13 18 | sylibr | |- ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ x e. A ) -> ( G ` x ) `' G x ) |
| 20 | 7 | adantr | |- ( ( F : A -onto-> B /\ G : A -onto-> B ) -> F Fn A ) |
| 21 | fnopfv | |- ( ( F Fn A /\ x e. A ) -> <. x , ( F ` x ) >. e. F ) |
|
| 22 | 20 21 | sylan | |- ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ x e. A ) -> <. x , ( F ` x ) >. e. F ) |
| 23 | df-br | |- ( x F ( F ` x ) <-> <. x , ( F ` x ) >. e. F ) |
|
| 24 | 22 23 | sylibr | |- ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ x e. A ) -> x F ( F ` x ) ) |
| 25 | breq2 | |- ( y = x -> ( ( G ` x ) `' G y <-> ( G ` x ) `' G x ) ) |
|
| 26 | breq1 | |- ( y = x -> ( y F ( F ` x ) <-> x F ( F ` x ) ) ) |
|
| 27 | 25 26 | anbi12d | |- ( y = x -> ( ( ( G ` x ) `' G y /\ y F ( F ` x ) ) <-> ( ( G ` x ) `' G x /\ x F ( F ` x ) ) ) ) |
| 28 | 15 27 | spcev | |- ( ( ( G ` x ) `' G x /\ x F ( F ` x ) ) -> E. y ( ( G ` x ) `' G y /\ y F ( F ` x ) ) ) |
| 29 | 19 24 28 | syl2anc | |- ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ x e. A ) -> E. y ( ( G ` x ) `' G y /\ y F ( F ` x ) ) ) |
| 30 | fvex | |- ( F ` x ) e. _V |
|
| 31 | 14 30 | brco | |- ( ( G ` x ) ( F o. `' G ) ( F ` x ) <-> E. y ( ( G ` x ) `' G y /\ y F ( F ` x ) ) ) |
| 32 | 29 31 | sylibr | |- ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ x e. A ) -> ( G ` x ) ( F o. `' G ) ( F ` x ) ) |
| 33 | 32 | adantlr | |- ( ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ ( F o. `' G ) = ( _I |` B ) ) /\ x e. A ) -> ( G ` x ) ( F o. `' G ) ( F ` x ) ) |
| 34 | breq | |- ( ( F o. `' G ) = ( _I |` B ) -> ( ( G ` x ) ( F o. `' G ) ( F ` x ) <-> ( G ` x ) ( _I |` B ) ( F ` x ) ) ) |
|
| 35 | 34 | ad2antlr | |- ( ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ ( F o. `' G ) = ( _I |` B ) ) /\ x e. A ) -> ( ( G ` x ) ( F o. `' G ) ( F ` x ) <-> ( G ` x ) ( _I |` B ) ( F ` x ) ) ) |
| 36 | 33 35 | mpbid | |- ( ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ ( F o. `' G ) = ( _I |` B ) ) /\ x e. A ) -> ( G ` x ) ( _I |` B ) ( F ` x ) ) |
| 37 | fof | |- ( G : A -onto-> B -> G : A --> B ) |
|
| 38 | 37 | adantl | |- ( ( F : A -onto-> B /\ G : A -onto-> B ) -> G : A --> B ) |
| 39 | 38 | ffvelcdmda | |- ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ x e. A ) -> ( G ` x ) e. B ) |
| 40 | fof | |- ( F : A -onto-> B -> F : A --> B ) |
|
| 41 | 40 | adantr | |- ( ( F : A -onto-> B /\ G : A -onto-> B ) -> F : A --> B ) |
| 42 | 41 | ffvelcdmda | |- ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ x e. A ) -> ( F ` x ) e. B ) |
| 43 | resieq | |- ( ( ( G ` x ) e. B /\ ( F ` x ) e. B ) -> ( ( G ` x ) ( _I |` B ) ( F ` x ) <-> ( G ` x ) = ( F ` x ) ) ) |
|
| 44 | 39 42 43 | syl2anc | |- ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ x e. A ) -> ( ( G ` x ) ( _I |` B ) ( F ` x ) <-> ( G ` x ) = ( F ` x ) ) ) |
| 45 | 44 | adantlr | |- ( ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ ( F o. `' G ) = ( _I |` B ) ) /\ x e. A ) -> ( ( G ` x ) ( _I |` B ) ( F ` x ) <-> ( G ` x ) = ( F ` x ) ) ) |
| 46 | 36 45 | mpbid | |- ( ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ ( F o. `' G ) = ( _I |` B ) ) /\ x e. A ) -> ( G ` x ) = ( F ` x ) ) |
| 47 | 46 | eqcomd | |- ( ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ ( F o. `' G ) = ( _I |` B ) ) /\ x e. A ) -> ( F ` x ) = ( G ` x ) ) |
| 48 | 8 10 47 | eqfnfvd | |- ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ ( F o. `' G ) = ( _I |` B ) ) -> F = G ) |
| 49 | 48 | ex | |- ( ( F : A -onto-> B /\ G : A -onto-> B ) -> ( ( F o. `' G ) = ( _I |` B ) -> F = G ) ) |
| 50 | 6 49 | impbid | |- ( ( F : A -onto-> B /\ G : A -onto-> B ) -> ( F = G <-> ( F o. `' G ) = ( _I |` B ) ) ) |