This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for function equality in terms of vanishing of the composition with the inverse. (Contributed by Stefan O'Rear, 12-Feb-2015) (Proof shortened by Wolf Lammen, 29-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1eqcocnv | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → ( 𝐹 = 𝐺 ↔ ( ◡ 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1cocnv1 | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) | |
| 2 | coeq2 | ⊢ ( 𝐹 = 𝐺 → ( ◡ 𝐹 ∘ 𝐹 ) = ( ◡ 𝐹 ∘ 𝐺 ) ) | |
| 3 | 2 | eqeq1d | ⊢ ( 𝐹 = 𝐺 → ( ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ↔ ( ◡ 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐴 ) ) ) |
| 4 | 1 3 | syl5ibcom | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( 𝐹 = 𝐺 → ( ◡ 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐴 ) ) ) |
| 5 | 4 | adantr | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → ( 𝐹 = 𝐺 → ( ◡ 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐴 ) ) ) |
| 6 | f1fn | ⊢ ( 𝐺 : 𝐴 –1-1→ 𝐵 → 𝐺 Fn 𝐴 ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → 𝐺 Fn 𝐴 ) |
| 8 | 7 | adantr | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ ( ◡ 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐴 ) ) → 𝐺 Fn 𝐴 ) |
| 9 | f1fn | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → 𝐹 Fn 𝐴 ) | |
| 10 | 9 | adantr | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → 𝐹 Fn 𝐴 ) |
| 11 | 10 | adantr | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ ( ◡ 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐴 ) ) → 𝐹 Fn 𝐴 ) |
| 12 | equid | ⊢ 𝑥 = 𝑥 | |
| 13 | resieq | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ( I ↾ 𝐴 ) 𝑥 ↔ 𝑥 = 𝑥 ) ) | |
| 14 | 12 13 | mpbiri | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ( I ↾ 𝐴 ) 𝑥 ) |
| 15 | 14 | anidms | ⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ( I ↾ 𝐴 ) 𝑥 ) |
| 16 | 15 | adantl | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ ( ◡ 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ( I ↾ 𝐴 ) 𝑥 ) |
| 17 | breq | ⊢ ( ( ◡ 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐴 ) → ( 𝑥 ( ◡ 𝐹 ∘ 𝐺 ) 𝑥 ↔ 𝑥 ( I ↾ 𝐴 ) 𝑥 ) ) | |
| 18 | 17 | ad2antlr | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ ( ◡ 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ( ◡ 𝐹 ∘ 𝐺 ) 𝑥 ↔ 𝑥 ( I ↾ 𝐴 ) 𝑥 ) ) |
| 19 | 16 18 | mpbird | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ ( ◡ 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ( ◡ 𝐹 ∘ 𝐺 ) 𝑥 ) |
| 20 | fnfun | ⊢ ( 𝐺 Fn 𝐴 → Fun 𝐺 ) | |
| 21 | 7 20 | syl | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → Fun 𝐺 ) |
| 22 | 7 | fndmd | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → dom 𝐺 = 𝐴 ) |
| 23 | 22 | eleq2d | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → ( 𝑥 ∈ dom 𝐺 ↔ 𝑥 ∈ 𝐴 ) ) |
| 24 | 23 | biimpar | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ dom 𝐺 ) |
| 25 | funopfvb | ⊢ ( ( Fun 𝐺 ∧ 𝑥 ∈ dom 𝐺 ) → ( ( 𝐺 ‘ 𝑥 ) = 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐺 ) ) | |
| 26 | 21 24 25 | syl2an2r | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑥 ) = 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐺 ) ) |
| 27 | 26 | bicomd | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐺 ↔ ( 𝐺 ‘ 𝑥 ) = 𝑦 ) ) |
| 28 | df-br | ⊢ ( 𝑥 𝐺 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐺 ) | |
| 29 | eqcom | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑥 ) ↔ ( 𝐺 ‘ 𝑥 ) = 𝑦 ) | |
| 30 | 27 28 29 | 3bitr4g | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 𝐺 𝑦 ↔ 𝑦 = ( 𝐺 ‘ 𝑥 ) ) ) |
| 31 | 30 | biimpd | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 𝐺 𝑦 → 𝑦 = ( 𝐺 ‘ 𝑥 ) ) ) |
| 32 | df-br | ⊢ ( 𝑥 𝐹 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ) | |
| 33 | fnfun | ⊢ ( 𝐹 Fn 𝐴 → Fun 𝐹 ) | |
| 34 | 10 33 | syl | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → Fun 𝐹 ) |
| 35 | 10 | fndmd | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → dom 𝐹 = 𝐴 ) |
| 36 | 35 | eleq2d | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → ( 𝑥 ∈ dom 𝐹 ↔ 𝑥 ∈ 𝐴 ) ) |
| 37 | 36 | biimpar | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ dom 𝐹 ) |
| 38 | funopfvb | ⊢ ( ( Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ) ) | |
| 39 | 34 37 38 | syl2an2r | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ) ) |
| 40 | 32 39 | bitr4id | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 𝐹 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ) |
| 41 | vex | ⊢ 𝑦 ∈ V | |
| 42 | vex | ⊢ 𝑥 ∈ V | |
| 43 | 41 42 | brcnv | ⊢ ( 𝑦 ◡ 𝐹 𝑥 ↔ 𝑥 𝐹 𝑦 ) |
| 44 | eqcom | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) | |
| 45 | 40 43 44 | 3bitr4g | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ◡ 𝐹 𝑥 ↔ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
| 46 | 45 | biimpd | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ◡ 𝐹 𝑥 → 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
| 47 | 31 46 | anim12d | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 𝐺 𝑦 ∧ 𝑦 ◡ 𝐹 𝑥 ) → ( 𝑦 = ( 𝐺 ‘ 𝑥 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 48 | 47 | eximdv | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑦 ( 𝑥 𝐺 𝑦 ∧ 𝑦 ◡ 𝐹 𝑥 ) → ∃ 𝑦 ( 𝑦 = ( 𝐺 ‘ 𝑥 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 49 | 42 42 | brco | ⊢ ( 𝑥 ( ◡ 𝐹 ∘ 𝐺 ) 𝑥 ↔ ∃ 𝑦 ( 𝑥 𝐺 𝑦 ∧ 𝑦 ◡ 𝐹 𝑥 ) ) |
| 50 | fvex | ⊢ ( 𝐺 ‘ 𝑥 ) ∈ V | |
| 51 | 50 | eqvinc | ⊢ ( ( 𝐺 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ↔ ∃ 𝑦 ( 𝑦 = ( 𝐺 ‘ 𝑥 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
| 52 | 48 49 51 | 3imtr4g | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ( ◡ 𝐹 ∘ 𝐺 ) 𝑥 → ( 𝐺 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) ) |
| 53 | 52 | adantlr | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ ( ◡ 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ( ◡ 𝐹 ∘ 𝐺 ) 𝑥 → ( 𝐺 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) ) |
| 54 | 19 53 | mpd | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ ( ◡ 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 55 | 8 11 54 | eqfnfvd | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ ( ◡ 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐴 ) ) → 𝐺 = 𝐹 ) |
| 56 | 55 | eqcomd | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ ( ◡ 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐴 ) ) → 𝐹 = 𝐺 ) |
| 57 | 56 | ex | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → ( ( ◡ 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐴 ) → 𝐹 = 𝐺 ) ) |
| 58 | 5 57 | impbid | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → ( 𝐹 = 𝐺 ↔ ( ◡ 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐴 ) ) ) |