This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a Cauchy filter base by an uniformly continuous function is a Cauchy filter base. Deduction form. Proposition 3 of BourbakiTop1 p. II.13. (Contributed by Thierry Arnoux, 18-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fmucnd.1 | ⊢ ( 𝜑 → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) | |
| fmucnd.2 | ⊢ ( 𝜑 → 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) | ||
| fmucnd.3 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ) | ||
| fmucnd.4 | ⊢ ( 𝜑 → 𝐶 ∈ ( CauFilu ‘ 𝑈 ) ) | ||
| fmucnd.5 | ⊢ 𝐷 = ran ( 𝑎 ∈ 𝐶 ↦ ( 𝐹 “ 𝑎 ) ) | ||
| Assertion | fmucnd | ⊢ ( 𝜑 → 𝐷 ∈ ( CauFilu ‘ 𝑉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmucnd.1 | ⊢ ( 𝜑 → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) | |
| 2 | fmucnd.2 | ⊢ ( 𝜑 → 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) | |
| 3 | fmucnd.3 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ) | |
| 4 | fmucnd.4 | ⊢ ( 𝜑 → 𝐶 ∈ ( CauFilu ‘ 𝑈 ) ) | |
| 5 | fmucnd.5 | ⊢ 𝐷 = ran ( 𝑎 ∈ 𝐶 ↦ ( 𝐹 “ 𝑎 ) ) | |
| 6 | cfilufbas | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐶 ∈ ( CauFilu ‘ 𝑈 ) ) → 𝐶 ∈ ( fBas ‘ 𝑋 ) ) | |
| 7 | 1 4 6 | syl2anc | ⊢ ( 𝜑 → 𝐶 ∈ ( fBas ‘ 𝑋 ) ) |
| 8 | isucn | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ) ) | |
| 9 | 8 | simprbda | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) ∧ 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 10 | 1 2 3 9 | syl21anc | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 11 | 2 | elfvexd | ⊢ ( 𝜑 → 𝑌 ∈ V ) |
| 12 | 5 | fbasrn | ⊢ ( ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ V ) → 𝐷 ∈ ( fBas ‘ 𝑌 ) ) |
| 13 | 7 10 11 12 | syl3anc | ⊢ ( 𝜑 → 𝐷 ∈ ( fBas ‘ 𝑌 ) ) |
| 14 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑎 ∈ 𝐶 ) ∧ ( 𝑎 × 𝑎 ) ⊆ ( ◡ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ 𝑣 ) ) → 𝑎 ∈ 𝐶 ) | |
| 15 | eqid | ⊢ ( 𝐹 “ 𝑎 ) = ( 𝐹 “ 𝑎 ) | |
| 16 | imaeq2 | ⊢ ( 𝑐 = 𝑎 → ( 𝐹 “ 𝑐 ) = ( 𝐹 “ 𝑎 ) ) | |
| 17 | 16 | rspceeqv | ⊢ ( ( 𝑎 ∈ 𝐶 ∧ ( 𝐹 “ 𝑎 ) = ( 𝐹 “ 𝑎 ) ) → ∃ 𝑐 ∈ 𝐶 ( 𝐹 “ 𝑎 ) = ( 𝐹 “ 𝑐 ) ) |
| 18 | 14 15 17 | sylancl | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑎 ∈ 𝐶 ) ∧ ( 𝑎 × 𝑎 ) ⊆ ( ◡ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ 𝑣 ) ) → ∃ 𝑐 ∈ 𝐶 ( 𝐹 “ 𝑎 ) = ( 𝐹 “ 𝑐 ) ) |
| 19 | imaexg | ⊢ ( 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) → ( 𝐹 “ 𝑎 ) ∈ V ) | |
| 20 | eqid | ⊢ ( 𝑐 ∈ 𝐶 ↦ ( 𝐹 “ 𝑐 ) ) = ( 𝑐 ∈ 𝐶 ↦ ( 𝐹 “ 𝑐 ) ) | |
| 21 | 20 | elrnmpt | ⊢ ( ( 𝐹 “ 𝑎 ) ∈ V → ( ( 𝐹 “ 𝑎 ) ∈ ran ( 𝑐 ∈ 𝐶 ↦ ( 𝐹 “ 𝑐 ) ) ↔ ∃ 𝑐 ∈ 𝐶 ( 𝐹 “ 𝑎 ) = ( 𝐹 “ 𝑐 ) ) ) |
| 22 | 3 19 21 | 3syl | ⊢ ( 𝜑 → ( ( 𝐹 “ 𝑎 ) ∈ ran ( 𝑐 ∈ 𝐶 ↦ ( 𝐹 “ 𝑐 ) ) ↔ ∃ 𝑐 ∈ 𝐶 ( 𝐹 “ 𝑎 ) = ( 𝐹 “ 𝑐 ) ) ) |
| 23 | 22 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑎 ∈ 𝐶 ) ∧ ( 𝑎 × 𝑎 ) ⊆ ( ◡ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ 𝑣 ) ) → ( ( 𝐹 “ 𝑎 ) ∈ ran ( 𝑐 ∈ 𝐶 ↦ ( 𝐹 “ 𝑐 ) ) ↔ ∃ 𝑐 ∈ 𝐶 ( 𝐹 “ 𝑎 ) = ( 𝐹 “ 𝑐 ) ) ) |
| 24 | 18 23 | mpbird | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑎 ∈ 𝐶 ) ∧ ( 𝑎 × 𝑎 ) ⊆ ( ◡ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ 𝑣 ) ) → ( 𝐹 “ 𝑎 ) ∈ ran ( 𝑐 ∈ 𝐶 ↦ ( 𝐹 “ 𝑐 ) ) ) |
| 25 | imaeq2 | ⊢ ( 𝑎 = 𝑐 → ( 𝐹 “ 𝑎 ) = ( 𝐹 “ 𝑐 ) ) | |
| 26 | 25 | cbvmptv | ⊢ ( 𝑎 ∈ 𝐶 ↦ ( 𝐹 “ 𝑎 ) ) = ( 𝑐 ∈ 𝐶 ↦ ( 𝐹 “ 𝑐 ) ) |
| 27 | 26 | rneqi | ⊢ ran ( 𝑎 ∈ 𝐶 ↦ ( 𝐹 “ 𝑎 ) ) = ran ( 𝑐 ∈ 𝐶 ↦ ( 𝐹 “ 𝑐 ) ) |
| 28 | 5 27 | eqtri | ⊢ 𝐷 = ran ( 𝑐 ∈ 𝐶 ↦ ( 𝐹 “ 𝑐 ) ) |
| 29 | 24 28 | eleqtrrdi | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑎 ∈ 𝐶 ) ∧ ( 𝑎 × 𝑎 ) ⊆ ( ◡ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ 𝑣 ) ) → ( 𝐹 “ 𝑎 ) ∈ 𝐷 ) |
| 30 | 10 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝑋 ) |
| 31 | 30 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑎 ∈ 𝐶 ) ∧ ( 𝑎 × 𝑎 ) ⊆ ( ◡ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ 𝑣 ) ) → 𝐹 Fn 𝑋 ) |
| 32 | fbelss | ⊢ ( ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑎 ∈ 𝐶 ) → 𝑎 ⊆ 𝑋 ) | |
| 33 | 7 32 | sylan | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐶 ) → 𝑎 ⊆ 𝑋 ) |
| 34 | 33 | ad4ant13 | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑎 ∈ 𝐶 ) ∧ ( 𝑎 × 𝑎 ) ⊆ ( ◡ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ 𝑣 ) ) → 𝑎 ⊆ 𝑋 ) |
| 35 | fmucndlem | ⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝑎 ⊆ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ ( 𝑎 × 𝑎 ) ) = ( ( 𝐹 “ 𝑎 ) × ( 𝐹 “ 𝑎 ) ) ) | |
| 36 | 31 34 35 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑎 ∈ 𝐶 ) ∧ ( 𝑎 × 𝑎 ) ⊆ ( ◡ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ 𝑣 ) ) → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ ( 𝑎 × 𝑎 ) ) = ( ( 𝐹 “ 𝑎 ) × ( 𝐹 “ 𝑎 ) ) ) |
| 37 | eqid | ⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) | |
| 38 | 37 | mpofun | ⊢ Fun ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) |
| 39 | funimass2 | ⊢ ( ( Fun ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) ∧ ( 𝑎 × 𝑎 ) ⊆ ( ◡ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ 𝑣 ) ) → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ ( 𝑎 × 𝑎 ) ) ⊆ 𝑣 ) | |
| 40 | 38 39 | mpan | ⊢ ( ( 𝑎 × 𝑎 ) ⊆ ( ◡ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ 𝑣 ) → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ ( 𝑎 × 𝑎 ) ) ⊆ 𝑣 ) |
| 41 | 40 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑎 ∈ 𝐶 ) ∧ ( 𝑎 × 𝑎 ) ⊆ ( ◡ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ 𝑣 ) ) → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ ( 𝑎 × 𝑎 ) ) ⊆ 𝑣 ) |
| 42 | 36 41 | eqsstrrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑎 ∈ 𝐶 ) ∧ ( 𝑎 × 𝑎 ) ⊆ ( ◡ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ 𝑣 ) ) → ( ( 𝐹 “ 𝑎 ) × ( 𝐹 “ 𝑎 ) ) ⊆ 𝑣 ) |
| 43 | id | ⊢ ( 𝑏 = ( 𝐹 “ 𝑎 ) → 𝑏 = ( 𝐹 “ 𝑎 ) ) | |
| 44 | 43 | sqxpeqd | ⊢ ( 𝑏 = ( 𝐹 “ 𝑎 ) → ( 𝑏 × 𝑏 ) = ( ( 𝐹 “ 𝑎 ) × ( 𝐹 “ 𝑎 ) ) ) |
| 45 | 44 | sseq1d | ⊢ ( 𝑏 = ( 𝐹 “ 𝑎 ) → ( ( 𝑏 × 𝑏 ) ⊆ 𝑣 ↔ ( ( 𝐹 “ 𝑎 ) × ( 𝐹 “ 𝑎 ) ) ⊆ 𝑣 ) ) |
| 46 | 45 | rspcev | ⊢ ( ( ( 𝐹 “ 𝑎 ) ∈ 𝐷 ∧ ( ( 𝐹 “ 𝑎 ) × ( 𝐹 “ 𝑎 ) ) ⊆ 𝑣 ) → ∃ 𝑏 ∈ 𝐷 ( 𝑏 × 𝑏 ) ⊆ 𝑣 ) |
| 47 | 29 42 46 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑎 ∈ 𝐶 ) ∧ ( 𝑎 × 𝑎 ) ⊆ ( ◡ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ 𝑣 ) ) → ∃ 𝑏 ∈ 𝐷 ( 𝑏 × 𝑏 ) ⊆ 𝑣 ) |
| 48 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
| 49 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → 𝐶 ∈ ( CauFilu ‘ 𝑈 ) ) |
| 50 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) |
| 51 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ) |
| 52 | simpr | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → 𝑣 ∈ 𝑉 ) | |
| 53 | nfcv | ⊢ Ⅎ 𝑠 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 | |
| 54 | nfcv | ⊢ Ⅎ 𝑡 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 | |
| 55 | nfcv | ⊢ Ⅎ 𝑥 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐹 ‘ 𝑡 ) 〉 | |
| 56 | nfcv | ⊢ Ⅎ 𝑦 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐹 ‘ 𝑡 ) 〉 | |
| 57 | simpl | ⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) → 𝑥 = 𝑠 ) | |
| 58 | 57 | fveq2d | ⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑠 ) ) |
| 59 | simpr | ⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) → 𝑦 = 𝑡 ) | |
| 60 | 59 | fveq2d | ⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑡 ) ) |
| 61 | 58 60 | opeq12d | ⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 = 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐹 ‘ 𝑡 ) 〉 ) |
| 62 | 53 54 55 56 61 | cbvmpo | ⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) = ( 𝑠 ∈ 𝑋 , 𝑡 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐹 ‘ 𝑡 ) 〉 ) |
| 63 | 48 50 51 52 62 | ucnprima | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → ( ◡ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ 𝑣 ) ∈ 𝑈 ) |
| 64 | cfiluexsm | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐶 ∈ ( CauFilu ‘ 𝑈 ) ∧ ( ◡ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ 𝑣 ) ∈ 𝑈 ) → ∃ 𝑎 ∈ 𝐶 ( 𝑎 × 𝑎 ) ⊆ ( ◡ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ 𝑣 ) ) | |
| 65 | 48 49 63 64 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → ∃ 𝑎 ∈ 𝐶 ( 𝑎 × 𝑎 ) ⊆ ( ◡ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ 𝑣 ) ) |
| 66 | 47 65 | r19.29a | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → ∃ 𝑏 ∈ 𝐷 ( 𝑏 × 𝑏 ) ⊆ 𝑣 ) |
| 67 | 66 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑣 ∈ 𝑉 ∃ 𝑏 ∈ 𝐷 ( 𝑏 × 𝑏 ) ⊆ 𝑣 ) |
| 68 | iscfilu | ⊢ ( 𝑉 ∈ ( UnifOn ‘ 𝑌 ) → ( 𝐷 ∈ ( CauFilu ‘ 𝑉 ) ↔ ( 𝐷 ∈ ( fBas ‘ 𝑌 ) ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑏 ∈ 𝐷 ( 𝑏 × 𝑏 ) ⊆ 𝑣 ) ) ) | |
| 69 | 2 68 | syl | ⊢ ( 𝜑 → ( 𝐷 ∈ ( CauFilu ‘ 𝑉 ) ↔ ( 𝐷 ∈ ( fBas ‘ 𝑌 ) ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑏 ∈ 𝐷 ( 𝑏 × 𝑏 ) ⊆ 𝑣 ) ) ) |
| 70 | 13 67 69 | mpbir2and | ⊢ ( 𝜑 → 𝐷 ∈ ( CauFilu ‘ 𝑉 ) ) |