This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The preimage by a uniformly continuous function F of an entourage W of Y is an entourage of X . Note of the definition 1 of BourbakiTop1 p. II.6. (Contributed by Thierry Arnoux, 19-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ucnprima.1 | ⊢ ( 𝜑 → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) | |
| ucnprima.2 | ⊢ ( 𝜑 → 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) | ||
| ucnprima.3 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ) | ||
| ucnprima.4 | ⊢ ( 𝜑 → 𝑊 ∈ 𝑉 ) | ||
| ucnprima.5 | ⊢ 𝐺 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) | ||
| Assertion | ucnprima | ⊢ ( 𝜑 → ( ◡ 𝐺 “ 𝑊 ) ∈ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ucnprima.1 | ⊢ ( 𝜑 → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) | |
| 2 | ucnprima.2 | ⊢ ( 𝜑 → 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) | |
| 3 | ucnprima.3 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ) | |
| 4 | ucnprima.4 | ⊢ ( 𝜑 → 𝑊 ∈ 𝑉 ) | |
| 5 | ucnprima.5 | ⊢ 𝐺 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) | |
| 6 | 1 2 3 4 5 | ucnima | ⊢ ( 𝜑 → ∃ 𝑟 ∈ 𝑈 ( 𝐺 “ 𝑟 ) ⊆ 𝑊 ) |
| 7 | 5 | mpofun | ⊢ Fun 𝐺 |
| 8 | ustssxp | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑟 ∈ 𝑈 ) → 𝑟 ⊆ ( 𝑋 × 𝑋 ) ) | |
| 9 | 1 8 | sylan | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑈 ) → 𝑟 ⊆ ( 𝑋 × 𝑋 ) ) |
| 10 | opex | ⊢ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ∈ V | |
| 11 | 5 10 | dmmpo | ⊢ dom 𝐺 = ( 𝑋 × 𝑋 ) |
| 12 | 9 11 | sseqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑈 ) → 𝑟 ⊆ dom 𝐺 ) |
| 13 | funimass3 | ⊢ ( ( Fun 𝐺 ∧ 𝑟 ⊆ dom 𝐺 ) → ( ( 𝐺 “ 𝑟 ) ⊆ 𝑊 ↔ 𝑟 ⊆ ( ◡ 𝐺 “ 𝑊 ) ) ) | |
| 14 | 7 12 13 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑈 ) → ( ( 𝐺 “ 𝑟 ) ⊆ 𝑊 ↔ 𝑟 ⊆ ( ◡ 𝐺 “ 𝑊 ) ) ) |
| 15 | 14 | rexbidva | ⊢ ( 𝜑 → ( ∃ 𝑟 ∈ 𝑈 ( 𝐺 “ 𝑟 ) ⊆ 𝑊 ↔ ∃ 𝑟 ∈ 𝑈 𝑟 ⊆ ( ◡ 𝐺 “ 𝑊 ) ) ) |
| 16 | 6 15 | mpbid | ⊢ ( 𝜑 → ∃ 𝑟 ∈ 𝑈 𝑟 ⊆ ( ◡ 𝐺 “ 𝑊 ) ) |
| 17 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑈 ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
| 18 | simpr | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑈 ) → 𝑟 ∈ 𝑈 ) | |
| 19 | cnvimass | ⊢ ( ◡ 𝐺 “ 𝑊 ) ⊆ dom 𝐺 | |
| 20 | 19 11 | sseqtri | ⊢ ( ◡ 𝐺 “ 𝑊 ) ⊆ ( 𝑋 × 𝑋 ) |
| 21 | 20 | a1i | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑈 ) → ( ◡ 𝐺 “ 𝑊 ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 22 | ustssel | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑟 ∈ 𝑈 ∧ ( ◡ 𝐺 “ 𝑊 ) ⊆ ( 𝑋 × 𝑋 ) ) → ( 𝑟 ⊆ ( ◡ 𝐺 “ 𝑊 ) → ( ◡ 𝐺 “ 𝑊 ) ∈ 𝑈 ) ) | |
| 23 | 17 18 21 22 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑈 ) → ( 𝑟 ⊆ ( ◡ 𝐺 “ 𝑊 ) → ( ◡ 𝐺 “ 𝑊 ) ∈ 𝑈 ) ) |
| 24 | 23 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑟 ∈ 𝑈 𝑟 ⊆ ( ◡ 𝐺 “ 𝑊 ) → ( ◡ 𝐺 “ 𝑊 ) ∈ 𝑈 ) ) |
| 25 | 16 24 | mpd | ⊢ ( 𝜑 → ( ◡ 𝐺 “ 𝑊 ) ∈ 𝑈 ) |