This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate " F is a uniformly continuous function from uniform space U to uniform space V ". (Contributed by Thierry Arnoux, 16-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isucn | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑠 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ucnval | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) → ( 𝑈 Cnu 𝑉 ) = { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑠 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) } ) | |
| 2 | 1 | eleq2d | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ↔ 𝐹 ∈ { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑠 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) } ) ) |
| 3 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 4 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 5 | 3 4 | breq12d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) |
| 6 | 5 | imbi2d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 7 | 6 | ralbidv | ⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 8 | 7 | rexralbidv | ⊢ ( 𝑓 = 𝐹 → ( ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) ↔ ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 9 | 8 | ralbidv | ⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑠 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑠 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 10 | 9 | elrab | ⊢ ( 𝐹 ∈ { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑠 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) } ↔ ( 𝐹 ∈ ( 𝑌 ↑m 𝑋 ) ∧ ∀ 𝑠 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 11 | 2 10 | bitrdi | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ↔ ( 𝐹 ∈ ( 𝑌 ↑m 𝑋 ) ∧ ∀ 𝑠 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 12 | elfvex | ⊢ ( 𝑉 ∈ ( UnifOn ‘ 𝑌 ) → 𝑌 ∈ V ) | |
| 13 | elfvex | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 ∈ V ) | |
| 14 | elmapg | ⊢ ( ( 𝑌 ∈ V ∧ 𝑋 ∈ V ) → ( 𝐹 ∈ ( 𝑌 ↑m 𝑋 ) ↔ 𝐹 : 𝑋 ⟶ 𝑌 ) ) | |
| 15 | 12 13 14 | syl2anr | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝑌 ↑m 𝑋 ) ↔ 𝐹 : 𝑋 ⟶ 𝑌 ) ) |
| 16 | 15 | anbi1d | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) → ( ( 𝐹 ∈ ( 𝑌 ↑m 𝑋 ) ∧ ∀ 𝑠 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑠 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 17 | 11 16 | bitrd | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑠 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) ) |