This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The filter generated by a Cauchy filter base is still a Cauchy filter base. (Contributed by Thierry Arnoux, 24-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cfilufg | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ) → ( 𝑋 filGen 𝐹 ) ∈ ( CauFilu ‘ 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfilufbas | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) | |
| 2 | fgcl | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑋 filGen 𝐹 ) ∈ ( Fil ‘ 𝑋 ) ) | |
| 3 | filfbas | ⊢ ( ( 𝑋 filGen 𝐹 ) ∈ ( Fil ‘ 𝑋 ) → ( 𝑋 filGen 𝐹 ) ∈ ( fBas ‘ 𝑋 ) ) | |
| 4 | 1 2 3 | 3syl | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ) → ( 𝑋 filGen 𝐹 ) ∈ ( fBas ‘ 𝑋 ) ) |
| 5 | 1 | ad3antrrr | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 × 𝑏 ) ⊆ 𝑣 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
| 6 | ssfg | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → 𝐹 ⊆ ( 𝑋 filGen 𝐹 ) ) | |
| 7 | 5 6 | syl | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 × 𝑏 ) ⊆ 𝑣 ) → 𝐹 ⊆ ( 𝑋 filGen 𝐹 ) ) |
| 8 | simplr | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 × 𝑏 ) ⊆ 𝑣 ) → 𝑏 ∈ 𝐹 ) | |
| 9 | 7 8 | sseldd | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 × 𝑏 ) ⊆ 𝑣 ) → 𝑏 ∈ ( 𝑋 filGen 𝐹 ) ) |
| 10 | id | ⊢ ( 𝑎 = 𝑏 → 𝑎 = 𝑏 ) | |
| 11 | 10 | sqxpeqd | ⊢ ( 𝑎 = 𝑏 → ( 𝑎 × 𝑎 ) = ( 𝑏 × 𝑏 ) ) |
| 12 | 11 | sseq1d | ⊢ ( 𝑎 = 𝑏 → ( ( 𝑎 × 𝑎 ) ⊆ 𝑣 ↔ ( 𝑏 × 𝑏 ) ⊆ 𝑣 ) ) |
| 13 | 12 | rspcev | ⊢ ( ( 𝑏 ∈ ( 𝑋 filGen 𝐹 ) ∧ ( 𝑏 × 𝑏 ) ⊆ 𝑣 ) → ∃ 𝑎 ∈ ( 𝑋 filGen 𝐹 ) ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) |
| 14 | 9 13 | sylancom | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 × 𝑏 ) ⊆ 𝑣 ) → ∃ 𝑎 ∈ ( 𝑋 filGen 𝐹 ) ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) |
| 15 | iscfilu | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ↔ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑣 ∈ 𝑈 ∃ 𝑏 ∈ 𝐹 ( 𝑏 × 𝑏 ) ⊆ 𝑣 ) ) ) | |
| 16 | 15 | simplbda | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ) → ∀ 𝑣 ∈ 𝑈 ∃ 𝑏 ∈ 𝐹 ( 𝑏 × 𝑏 ) ⊆ 𝑣 ) |
| 17 | 16 | r19.21bi | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ) ∧ 𝑣 ∈ 𝑈 ) → ∃ 𝑏 ∈ 𝐹 ( 𝑏 × 𝑏 ) ⊆ 𝑣 ) |
| 18 | 14 17 | r19.29a | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ) ∧ 𝑣 ∈ 𝑈 ) → ∃ 𝑎 ∈ ( 𝑋 filGen 𝐹 ) ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) |
| 19 | 18 | ralrimiva | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ) → ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ ( 𝑋 filGen 𝐹 ) ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) |
| 20 | iscfilu | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( ( 𝑋 filGen 𝐹 ) ∈ ( CauFilu ‘ 𝑈 ) ↔ ( ( 𝑋 filGen 𝐹 ) ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ ( 𝑋 filGen 𝐹 ) ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) ) ) | |
| 21 | 20 | adantr | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ) → ( ( 𝑋 filGen 𝐹 ) ∈ ( CauFilu ‘ 𝑈 ) ↔ ( ( 𝑋 filGen 𝐹 ) ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ ( 𝑋 filGen 𝐹 ) ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) ) ) |
| 22 | 4 19 21 | mpbir2and | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ) → ( 𝑋 filGen 𝐹 ) ∈ ( CauFilu ‘ 𝑈 ) ) |