This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a Cauchy filter base by an uniformly continuous function is a Cauchy filter base. Deduction form. Proposition 3 of BourbakiTop1 p. II.13. (Contributed by Thierry Arnoux, 18-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fmucnd.1 | |- ( ph -> U e. ( UnifOn ` X ) ) |
|
| fmucnd.2 | |- ( ph -> V e. ( UnifOn ` Y ) ) |
||
| fmucnd.3 | |- ( ph -> F e. ( U uCn V ) ) |
||
| fmucnd.4 | |- ( ph -> C e. ( CauFilU ` U ) ) |
||
| fmucnd.5 | |- D = ran ( a e. C |-> ( F " a ) ) |
||
| Assertion | fmucnd | |- ( ph -> D e. ( CauFilU ` V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmucnd.1 | |- ( ph -> U e. ( UnifOn ` X ) ) |
|
| 2 | fmucnd.2 | |- ( ph -> V e. ( UnifOn ` Y ) ) |
|
| 3 | fmucnd.3 | |- ( ph -> F e. ( U uCn V ) ) |
|
| 4 | fmucnd.4 | |- ( ph -> C e. ( CauFilU ` U ) ) |
|
| 5 | fmucnd.5 | |- D = ran ( a e. C |-> ( F " a ) ) |
|
| 6 | cfilufbas | |- ( ( U e. ( UnifOn ` X ) /\ C e. ( CauFilU ` U ) ) -> C e. ( fBas ` X ) ) |
|
| 7 | 1 4 6 | syl2anc | |- ( ph -> C e. ( fBas ` X ) ) |
| 8 | isucn | |- ( ( U e. ( UnifOn ` X ) /\ V e. ( UnifOn ` Y ) ) -> ( F e. ( U uCn V ) <-> ( F : X --> Y /\ A. v e. V E. r e. U A. x e. X A. y e. X ( x r y -> ( F ` x ) v ( F ` y ) ) ) ) ) |
|
| 9 | 8 | simprbda | |- ( ( ( U e. ( UnifOn ` X ) /\ V e. ( UnifOn ` Y ) ) /\ F e. ( U uCn V ) ) -> F : X --> Y ) |
| 10 | 1 2 3 9 | syl21anc | |- ( ph -> F : X --> Y ) |
| 11 | 2 | elfvexd | |- ( ph -> Y e. _V ) |
| 12 | 5 | fbasrn | |- ( ( C e. ( fBas ` X ) /\ F : X --> Y /\ Y e. _V ) -> D e. ( fBas ` Y ) ) |
| 13 | 7 10 11 12 | syl3anc | |- ( ph -> D e. ( fBas ` Y ) ) |
| 14 | simplr | |- ( ( ( ( ph /\ v e. V ) /\ a e. C ) /\ ( a X. a ) C_ ( `' ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " v ) ) -> a e. C ) |
|
| 15 | eqid | |- ( F " a ) = ( F " a ) |
|
| 16 | imaeq2 | |- ( c = a -> ( F " c ) = ( F " a ) ) |
|
| 17 | 16 | rspceeqv | |- ( ( a e. C /\ ( F " a ) = ( F " a ) ) -> E. c e. C ( F " a ) = ( F " c ) ) |
| 18 | 14 15 17 | sylancl | |- ( ( ( ( ph /\ v e. V ) /\ a e. C ) /\ ( a X. a ) C_ ( `' ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " v ) ) -> E. c e. C ( F " a ) = ( F " c ) ) |
| 19 | imaexg | |- ( F e. ( U uCn V ) -> ( F " a ) e. _V ) |
|
| 20 | eqid | |- ( c e. C |-> ( F " c ) ) = ( c e. C |-> ( F " c ) ) |
|
| 21 | 20 | elrnmpt | |- ( ( F " a ) e. _V -> ( ( F " a ) e. ran ( c e. C |-> ( F " c ) ) <-> E. c e. C ( F " a ) = ( F " c ) ) ) |
| 22 | 3 19 21 | 3syl | |- ( ph -> ( ( F " a ) e. ran ( c e. C |-> ( F " c ) ) <-> E. c e. C ( F " a ) = ( F " c ) ) ) |
| 23 | 22 | ad3antrrr | |- ( ( ( ( ph /\ v e. V ) /\ a e. C ) /\ ( a X. a ) C_ ( `' ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " v ) ) -> ( ( F " a ) e. ran ( c e. C |-> ( F " c ) ) <-> E. c e. C ( F " a ) = ( F " c ) ) ) |
| 24 | 18 23 | mpbird | |- ( ( ( ( ph /\ v e. V ) /\ a e. C ) /\ ( a X. a ) C_ ( `' ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " v ) ) -> ( F " a ) e. ran ( c e. C |-> ( F " c ) ) ) |
| 25 | imaeq2 | |- ( a = c -> ( F " a ) = ( F " c ) ) |
|
| 26 | 25 | cbvmptv | |- ( a e. C |-> ( F " a ) ) = ( c e. C |-> ( F " c ) ) |
| 27 | 26 | rneqi | |- ran ( a e. C |-> ( F " a ) ) = ran ( c e. C |-> ( F " c ) ) |
| 28 | 5 27 | eqtri | |- D = ran ( c e. C |-> ( F " c ) ) |
| 29 | 24 28 | eleqtrrdi | |- ( ( ( ( ph /\ v e. V ) /\ a e. C ) /\ ( a X. a ) C_ ( `' ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " v ) ) -> ( F " a ) e. D ) |
| 30 | 10 | ffnd | |- ( ph -> F Fn X ) |
| 31 | 30 | ad3antrrr | |- ( ( ( ( ph /\ v e. V ) /\ a e. C ) /\ ( a X. a ) C_ ( `' ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " v ) ) -> F Fn X ) |
| 32 | fbelss | |- ( ( C e. ( fBas ` X ) /\ a e. C ) -> a C_ X ) |
|
| 33 | 7 32 | sylan | |- ( ( ph /\ a e. C ) -> a C_ X ) |
| 34 | 33 | ad4ant13 | |- ( ( ( ( ph /\ v e. V ) /\ a e. C ) /\ ( a X. a ) C_ ( `' ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " v ) ) -> a C_ X ) |
| 35 | fmucndlem | |- ( ( F Fn X /\ a C_ X ) -> ( ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " ( a X. a ) ) = ( ( F " a ) X. ( F " a ) ) ) |
|
| 36 | 31 34 35 | syl2anc | |- ( ( ( ( ph /\ v e. V ) /\ a e. C ) /\ ( a X. a ) C_ ( `' ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " v ) ) -> ( ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " ( a X. a ) ) = ( ( F " a ) X. ( F " a ) ) ) |
| 37 | eqid | |- ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) = ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) |
|
| 38 | 37 | mpofun | |- Fun ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) |
| 39 | funimass2 | |- ( ( Fun ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) /\ ( a X. a ) C_ ( `' ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " v ) ) -> ( ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " ( a X. a ) ) C_ v ) |
|
| 40 | 38 39 | mpan | |- ( ( a X. a ) C_ ( `' ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " v ) -> ( ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " ( a X. a ) ) C_ v ) |
| 41 | 40 | adantl | |- ( ( ( ( ph /\ v e. V ) /\ a e. C ) /\ ( a X. a ) C_ ( `' ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " v ) ) -> ( ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " ( a X. a ) ) C_ v ) |
| 42 | 36 41 | eqsstrrd | |- ( ( ( ( ph /\ v e. V ) /\ a e. C ) /\ ( a X. a ) C_ ( `' ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " v ) ) -> ( ( F " a ) X. ( F " a ) ) C_ v ) |
| 43 | id | |- ( b = ( F " a ) -> b = ( F " a ) ) |
|
| 44 | 43 | sqxpeqd | |- ( b = ( F " a ) -> ( b X. b ) = ( ( F " a ) X. ( F " a ) ) ) |
| 45 | 44 | sseq1d | |- ( b = ( F " a ) -> ( ( b X. b ) C_ v <-> ( ( F " a ) X. ( F " a ) ) C_ v ) ) |
| 46 | 45 | rspcev | |- ( ( ( F " a ) e. D /\ ( ( F " a ) X. ( F " a ) ) C_ v ) -> E. b e. D ( b X. b ) C_ v ) |
| 47 | 29 42 46 | syl2anc | |- ( ( ( ( ph /\ v e. V ) /\ a e. C ) /\ ( a X. a ) C_ ( `' ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " v ) ) -> E. b e. D ( b X. b ) C_ v ) |
| 48 | 1 | adantr | |- ( ( ph /\ v e. V ) -> U e. ( UnifOn ` X ) ) |
| 49 | 4 | adantr | |- ( ( ph /\ v e. V ) -> C e. ( CauFilU ` U ) ) |
| 50 | 2 | adantr | |- ( ( ph /\ v e. V ) -> V e. ( UnifOn ` Y ) ) |
| 51 | 3 | adantr | |- ( ( ph /\ v e. V ) -> F e. ( U uCn V ) ) |
| 52 | simpr | |- ( ( ph /\ v e. V ) -> v e. V ) |
|
| 53 | nfcv | |- F/_ s <. ( F ` x ) , ( F ` y ) >. |
|
| 54 | nfcv | |- F/_ t <. ( F ` x ) , ( F ` y ) >. |
|
| 55 | nfcv | |- F/_ x <. ( F ` s ) , ( F ` t ) >. |
|
| 56 | nfcv | |- F/_ y <. ( F ` s ) , ( F ` t ) >. |
|
| 57 | simpl | |- ( ( x = s /\ y = t ) -> x = s ) |
|
| 58 | 57 | fveq2d | |- ( ( x = s /\ y = t ) -> ( F ` x ) = ( F ` s ) ) |
| 59 | simpr | |- ( ( x = s /\ y = t ) -> y = t ) |
|
| 60 | 59 | fveq2d | |- ( ( x = s /\ y = t ) -> ( F ` y ) = ( F ` t ) ) |
| 61 | 58 60 | opeq12d | |- ( ( x = s /\ y = t ) -> <. ( F ` x ) , ( F ` y ) >. = <. ( F ` s ) , ( F ` t ) >. ) |
| 62 | 53 54 55 56 61 | cbvmpo | |- ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) = ( s e. X , t e. X |-> <. ( F ` s ) , ( F ` t ) >. ) |
| 63 | 48 50 51 52 62 | ucnprima | |- ( ( ph /\ v e. V ) -> ( `' ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " v ) e. U ) |
| 64 | cfiluexsm | |- ( ( U e. ( UnifOn ` X ) /\ C e. ( CauFilU ` U ) /\ ( `' ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " v ) e. U ) -> E. a e. C ( a X. a ) C_ ( `' ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " v ) ) |
|
| 65 | 48 49 63 64 | syl3anc | |- ( ( ph /\ v e. V ) -> E. a e. C ( a X. a ) C_ ( `' ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " v ) ) |
| 66 | 47 65 | r19.29a | |- ( ( ph /\ v e. V ) -> E. b e. D ( b X. b ) C_ v ) |
| 67 | 66 | ralrimiva | |- ( ph -> A. v e. V E. b e. D ( b X. b ) C_ v ) |
| 68 | iscfilu | |- ( V e. ( UnifOn ` Y ) -> ( D e. ( CauFilU ` V ) <-> ( D e. ( fBas ` Y ) /\ A. v e. V E. b e. D ( b X. b ) C_ v ) ) ) |
|
| 69 | 2 68 | syl | |- ( ph -> ( D e. ( CauFilU ` V ) <-> ( D e. ( fBas ` Y ) /\ A. v e. V E. b e. D ( b X. b ) C_ v ) ) ) |
| 70 | 13 67 69 | mpbir2and | |- ( ph -> D e. ( CauFilU ` V ) ) |