This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The empty set is not a Godel formula of any height. (Contributed by AV, 21-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fmlaomn0 | ⊢ ( 𝑁 ∈ ω → ∅ ∉ ( Fmla ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝑥 = ∅ → ( Fmla ‘ 𝑥 ) = ( Fmla ‘ ∅ ) ) | |
| 2 | 1 | eleq2d | ⊢ ( 𝑥 = ∅ → ( ∅ ∈ ( Fmla ‘ 𝑥 ) ↔ ∅ ∈ ( Fmla ‘ ∅ ) ) ) |
| 3 | 2 | notbid | ⊢ ( 𝑥 = ∅ → ( ¬ ∅ ∈ ( Fmla ‘ 𝑥 ) ↔ ¬ ∅ ∈ ( Fmla ‘ ∅ ) ) ) |
| 4 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( Fmla ‘ 𝑥 ) = ( Fmla ‘ 𝑦 ) ) | |
| 5 | 4 | eleq2d | ⊢ ( 𝑥 = 𝑦 → ( ∅ ∈ ( Fmla ‘ 𝑥 ) ↔ ∅ ∈ ( Fmla ‘ 𝑦 ) ) ) |
| 6 | 5 | notbid | ⊢ ( 𝑥 = 𝑦 → ( ¬ ∅ ∈ ( Fmla ‘ 𝑥 ) ↔ ¬ ∅ ∈ ( Fmla ‘ 𝑦 ) ) ) |
| 7 | fveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( Fmla ‘ 𝑥 ) = ( Fmla ‘ suc 𝑦 ) ) | |
| 8 | 7 | eleq2d | ⊢ ( 𝑥 = suc 𝑦 → ( ∅ ∈ ( Fmla ‘ 𝑥 ) ↔ ∅ ∈ ( Fmla ‘ suc 𝑦 ) ) ) |
| 9 | 8 | notbid | ⊢ ( 𝑥 = suc 𝑦 → ( ¬ ∅ ∈ ( Fmla ‘ 𝑥 ) ↔ ¬ ∅ ∈ ( Fmla ‘ suc 𝑦 ) ) ) |
| 10 | fveq2 | ⊢ ( 𝑥 = 𝑁 → ( Fmla ‘ 𝑥 ) = ( Fmla ‘ 𝑁 ) ) | |
| 11 | 10 | eleq2d | ⊢ ( 𝑥 = 𝑁 → ( ∅ ∈ ( Fmla ‘ 𝑥 ) ↔ ∅ ∈ ( Fmla ‘ 𝑁 ) ) ) |
| 12 | 11 | notbid | ⊢ ( 𝑥 = 𝑁 → ( ¬ ∅ ∈ ( Fmla ‘ 𝑥 ) ↔ ¬ ∅ ∈ ( Fmla ‘ 𝑁 ) ) ) |
| 13 | 0ex | ⊢ ∅ ∈ V | |
| 14 | opex | ⊢ 〈 𝑖 , 𝑗 〉 ∈ V | |
| 15 | 13 14 | pm3.2i | ⊢ ( ∅ ∈ V ∧ 〈 𝑖 , 𝑗 〉 ∈ V ) |
| 16 | 15 | a1i | ⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( ∅ ∈ V ∧ 〈 𝑖 , 𝑗 〉 ∈ V ) ) |
| 17 | necom | ⊢ ( ∅ ≠ 〈 ∅ , 〈 𝑖 , 𝑗 〉 〉 ↔ 〈 ∅ , 〈 𝑖 , 𝑗 〉 〉 ≠ ∅ ) | |
| 18 | opnz | ⊢ ( 〈 ∅ , 〈 𝑖 , 𝑗 〉 〉 ≠ ∅ ↔ ( ∅ ∈ V ∧ 〈 𝑖 , 𝑗 〉 ∈ V ) ) | |
| 19 | 17 18 | bitri | ⊢ ( ∅ ≠ 〈 ∅ , 〈 𝑖 , 𝑗 〉 〉 ↔ ( ∅ ∈ V ∧ 〈 𝑖 , 𝑗 〉 ∈ V ) ) |
| 20 | 16 19 | sylibr | ⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ∅ ≠ 〈 ∅ , 〈 𝑖 , 𝑗 〉 〉 ) |
| 21 | 20 | neneqd | ⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ¬ ∅ = 〈 ∅ , 〈 𝑖 , 𝑗 〉 〉 ) |
| 22 | goel | ⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( 𝑖 ∈𝑔 𝑗 ) = 〈 ∅ , 〈 𝑖 , 𝑗 〉 〉 ) | |
| 23 | 22 | eqeq2d | ⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( ∅ = ( 𝑖 ∈𝑔 𝑗 ) ↔ ∅ = 〈 ∅ , 〈 𝑖 , 𝑗 〉 〉 ) ) |
| 24 | 21 23 | mtbird | ⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ¬ ∅ = ( 𝑖 ∈𝑔 𝑗 ) ) |
| 25 | 24 | rgen2 | ⊢ ∀ 𝑖 ∈ ω ∀ 𝑗 ∈ ω ¬ ∅ = ( 𝑖 ∈𝑔 𝑗 ) |
| 26 | ralnex2 | ⊢ ( ∀ 𝑖 ∈ ω ∀ 𝑗 ∈ ω ¬ ∅ = ( 𝑖 ∈𝑔 𝑗 ) ↔ ¬ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∅ = ( 𝑖 ∈𝑔 𝑗 ) ) | |
| 27 | 25 26 | mpbi | ⊢ ¬ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∅ = ( 𝑖 ∈𝑔 𝑗 ) |
| 28 | 27 | intnan | ⊢ ¬ ( ∅ ∈ V ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∅ = ( 𝑖 ∈𝑔 𝑗 ) ) |
| 29 | fmla0 | ⊢ ( Fmla ‘ ∅ ) = { 𝑥 ∈ V ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) } | |
| 30 | 29 | eleq2i | ⊢ ( ∅ ∈ ( Fmla ‘ ∅ ) ↔ ∅ ∈ { 𝑥 ∈ V ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) } ) |
| 31 | eqeq1 | ⊢ ( 𝑥 = ∅ → ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ↔ ∅ = ( 𝑖 ∈𝑔 𝑗 ) ) ) | |
| 32 | 31 | 2rexbidv | ⊢ ( 𝑥 = ∅ → ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∅ = ( 𝑖 ∈𝑔 𝑗 ) ) ) |
| 33 | 32 | elrab | ⊢ ( ∅ ∈ { 𝑥 ∈ V ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) } ↔ ( ∅ ∈ V ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∅ = ( 𝑖 ∈𝑔 𝑗 ) ) ) |
| 34 | 30 33 | bitri | ⊢ ( ∅ ∈ ( Fmla ‘ ∅ ) ↔ ( ∅ ∈ V ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∅ = ( 𝑖 ∈𝑔 𝑗 ) ) ) |
| 35 | 28 34 | mtbir | ⊢ ¬ ∅ ∈ ( Fmla ‘ ∅ ) |
| 36 | simpr | ⊢ ( ( 𝑦 ∈ ω ∧ ¬ ∅ ∈ ( Fmla ‘ 𝑦 ) ) → ¬ ∅ ∈ ( Fmla ‘ 𝑦 ) ) | |
| 37 | 1oex | ⊢ 1o ∈ V | |
| 38 | opex | ⊢ 〈 𝑢 , 𝑣 〉 ∈ V | |
| 39 | 37 38 | opnzi | ⊢ 〈 1o , 〈 𝑢 , 𝑣 〉 〉 ≠ ∅ |
| 40 | 39 | nesymi | ⊢ ¬ ∅ = 〈 1o , 〈 𝑢 , 𝑣 〉 〉 |
| 41 | gonafv | ⊢ ( ( 𝑢 ∈ ( Fmla ‘ 𝑦 ) ∧ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ) → ( 𝑢 ⊼𝑔 𝑣 ) = 〈 1o , 〈 𝑢 , 𝑣 〉 〉 ) | |
| 42 | 41 | adantll | ⊢ ( ( ( 𝑦 ∈ ω ∧ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ) ∧ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ) → ( 𝑢 ⊼𝑔 𝑣 ) = 〈 1o , 〈 𝑢 , 𝑣 〉 〉 ) |
| 43 | 42 | eqeq2d | ⊢ ( ( ( 𝑦 ∈ ω ∧ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ) ∧ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ) → ( ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ↔ ∅ = 〈 1o , 〈 𝑢 , 𝑣 〉 〉 ) ) |
| 44 | 40 43 | mtbiri | ⊢ ( ( ( 𝑦 ∈ ω ∧ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ) ∧ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ) → ¬ ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ) |
| 45 | 44 | ralrimiva | ⊢ ( ( 𝑦 ∈ ω ∧ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ) → ∀ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ¬ ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ) |
| 46 | 2oex | ⊢ 2o ∈ V | |
| 47 | opex | ⊢ 〈 𝑖 , 𝑢 〉 ∈ V | |
| 48 | 46 47 | opnzi | ⊢ 〈 2o , 〈 𝑖 , 𝑢 〉 〉 ≠ ∅ |
| 49 | 48 | nesymi | ⊢ ¬ ∅ = 〈 2o , 〈 𝑖 , 𝑢 〉 〉 |
| 50 | df-goal | ⊢ ∀𝑔 𝑖 𝑢 = 〈 2o , 〈 𝑖 , 𝑢 〉 〉 | |
| 51 | 50 | eqeq2i | ⊢ ( ∅ = ∀𝑔 𝑖 𝑢 ↔ ∅ = 〈 2o , 〈 𝑖 , 𝑢 〉 〉 ) |
| 52 | 49 51 | mtbir | ⊢ ¬ ∅ = ∀𝑔 𝑖 𝑢 |
| 53 | 52 | a1i | ⊢ ( ( ( 𝑦 ∈ ω ∧ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ) ∧ 𝑖 ∈ ω ) → ¬ ∅ = ∀𝑔 𝑖 𝑢 ) |
| 54 | 53 | ralrimiva | ⊢ ( ( 𝑦 ∈ ω ∧ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ) → ∀ 𝑖 ∈ ω ¬ ∅ = ∀𝑔 𝑖 𝑢 ) |
| 55 | 45 54 | jca | ⊢ ( ( 𝑦 ∈ ω ∧ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ) → ( ∀ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ¬ ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∧ ∀ 𝑖 ∈ ω ¬ ∅ = ∀𝑔 𝑖 𝑢 ) ) |
| 56 | 55 | ralrimiva | ⊢ ( 𝑦 ∈ ω → ∀ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∀ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ¬ ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∧ ∀ 𝑖 ∈ ω ¬ ∅ = ∀𝑔 𝑖 𝑢 ) ) |
| 57 | 56 | adantr | ⊢ ( ( 𝑦 ∈ ω ∧ ¬ ∅ ∈ ( Fmla ‘ 𝑦 ) ) → ∀ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∀ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ¬ ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∧ ∀ 𝑖 ∈ ω ¬ ∅ = ∀𝑔 𝑖 𝑢 ) ) |
| 58 | ralnex | ⊢ ( ∀ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ¬ ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ↔ ¬ ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ) | |
| 59 | ralnex | ⊢ ( ∀ 𝑖 ∈ ω ¬ ∅ = ∀𝑔 𝑖 𝑢 ↔ ¬ ∃ 𝑖 ∈ ω ∅ = ∀𝑔 𝑖 𝑢 ) | |
| 60 | 58 59 | anbi12i | ⊢ ( ( ∀ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ¬ ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∧ ∀ 𝑖 ∈ ω ¬ ∅ = ∀𝑔 𝑖 𝑢 ) ↔ ( ¬ ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∧ ¬ ∃ 𝑖 ∈ ω ∅ = ∀𝑔 𝑖 𝑢 ) ) |
| 61 | ioran | ⊢ ( ¬ ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ∅ = ∀𝑔 𝑖 𝑢 ) ↔ ( ¬ ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∧ ¬ ∃ 𝑖 ∈ ω ∅ = ∀𝑔 𝑖 𝑢 ) ) | |
| 62 | 60 61 | bitr4i | ⊢ ( ( ∀ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ¬ ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∧ ∀ 𝑖 ∈ ω ¬ ∅ = ∀𝑔 𝑖 𝑢 ) ↔ ¬ ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ∅ = ∀𝑔 𝑖 𝑢 ) ) |
| 63 | 62 | ralbii | ⊢ ( ∀ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∀ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ¬ ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∧ ∀ 𝑖 ∈ ω ¬ ∅ = ∀𝑔 𝑖 𝑢 ) ↔ ∀ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ¬ ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ∅ = ∀𝑔 𝑖 𝑢 ) ) |
| 64 | ralnex | ⊢ ( ∀ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ¬ ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ∅ = ∀𝑔 𝑖 𝑢 ) ↔ ¬ ∃ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ∅ = ∀𝑔 𝑖 𝑢 ) ) | |
| 65 | 63 64 | bitri | ⊢ ( ∀ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∀ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ¬ ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∧ ∀ 𝑖 ∈ ω ¬ ∅ = ∀𝑔 𝑖 𝑢 ) ↔ ¬ ∃ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ∅ = ∀𝑔 𝑖 𝑢 ) ) |
| 66 | 57 65 | sylib | ⊢ ( ( 𝑦 ∈ ω ∧ ¬ ∅ ∈ ( Fmla ‘ 𝑦 ) ) → ¬ ∃ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ∅ = ∀𝑔 𝑖 𝑢 ) ) |
| 67 | ioran | ⊢ ( ¬ ( ∅ ∈ ( Fmla ‘ 𝑦 ) ∨ ∃ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ∅ = ∀𝑔 𝑖 𝑢 ) ) ↔ ( ¬ ∅ ∈ ( Fmla ‘ 𝑦 ) ∧ ¬ ∃ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ∅ = ∀𝑔 𝑖 𝑢 ) ) ) | |
| 68 | 36 66 67 | sylanbrc | ⊢ ( ( 𝑦 ∈ ω ∧ ¬ ∅ ∈ ( Fmla ‘ 𝑦 ) ) → ¬ ( ∅ ∈ ( Fmla ‘ 𝑦 ) ∨ ∃ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ∅ = ∀𝑔 𝑖 𝑢 ) ) ) |
| 69 | fmlasuc | ⊢ ( 𝑦 ∈ ω → ( Fmla ‘ suc 𝑦 ) = ( ( Fmla ‘ 𝑦 ) ∪ { 𝑥 ∣ ∃ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) } ) ) | |
| 70 | 69 | eleq2d | ⊢ ( 𝑦 ∈ ω → ( ∅ ∈ ( Fmla ‘ suc 𝑦 ) ↔ ∅ ∈ ( ( Fmla ‘ 𝑦 ) ∪ { 𝑥 ∣ ∃ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) } ) ) ) |
| 71 | elun | ⊢ ( ∅ ∈ ( ( Fmla ‘ 𝑦 ) ∪ { 𝑥 ∣ ∃ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) } ) ↔ ( ∅ ∈ ( Fmla ‘ 𝑦 ) ∨ ∅ ∈ { 𝑥 ∣ ∃ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) } ) ) | |
| 72 | eqeq1 | ⊢ ( 𝑥 = ∅ → ( 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ↔ ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ) ) | |
| 73 | 72 | rexbidv | ⊢ ( 𝑥 = ∅ → ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ↔ ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ) ) |
| 74 | eqeq1 | ⊢ ( 𝑥 = ∅ → ( 𝑥 = ∀𝑔 𝑖 𝑢 ↔ ∅ = ∀𝑔 𝑖 𝑢 ) ) | |
| 75 | 74 | rexbidv | ⊢ ( 𝑥 = ∅ → ( ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ↔ ∃ 𝑖 ∈ ω ∅ = ∀𝑔 𝑖 𝑢 ) ) |
| 76 | 73 75 | orbi12d | ⊢ ( 𝑥 = ∅ → ( ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) ↔ ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ∅ = ∀𝑔 𝑖 𝑢 ) ) ) |
| 77 | 76 | rexbidv | ⊢ ( 𝑥 = ∅ → ( ∃ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) ↔ ∃ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ∅ = ∀𝑔 𝑖 𝑢 ) ) ) |
| 78 | 13 77 | elab | ⊢ ( ∅ ∈ { 𝑥 ∣ ∃ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) } ↔ ∃ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ∅ = ∀𝑔 𝑖 𝑢 ) ) |
| 79 | 78 | orbi2i | ⊢ ( ( ∅ ∈ ( Fmla ‘ 𝑦 ) ∨ ∅ ∈ { 𝑥 ∣ ∃ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) } ) ↔ ( ∅ ∈ ( Fmla ‘ 𝑦 ) ∨ ∃ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ∅ = ∀𝑔 𝑖 𝑢 ) ) ) |
| 80 | 71 79 | bitri | ⊢ ( ∅ ∈ ( ( Fmla ‘ 𝑦 ) ∪ { 𝑥 ∣ ∃ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) } ) ↔ ( ∅ ∈ ( Fmla ‘ 𝑦 ) ∨ ∃ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ∅ = ∀𝑔 𝑖 𝑢 ) ) ) |
| 81 | 70 80 | bitrdi | ⊢ ( 𝑦 ∈ ω → ( ∅ ∈ ( Fmla ‘ suc 𝑦 ) ↔ ( ∅ ∈ ( Fmla ‘ 𝑦 ) ∨ ∃ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ∅ = ∀𝑔 𝑖 𝑢 ) ) ) ) |
| 82 | 81 | adantr | ⊢ ( ( 𝑦 ∈ ω ∧ ¬ ∅ ∈ ( Fmla ‘ 𝑦 ) ) → ( ∅ ∈ ( Fmla ‘ suc 𝑦 ) ↔ ( ∅ ∈ ( Fmla ‘ 𝑦 ) ∨ ∃ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ∅ = ∀𝑔 𝑖 𝑢 ) ) ) ) |
| 83 | 68 82 | mtbird | ⊢ ( ( 𝑦 ∈ ω ∧ ¬ ∅ ∈ ( Fmla ‘ 𝑦 ) ) → ¬ ∅ ∈ ( Fmla ‘ suc 𝑦 ) ) |
| 84 | 83 | ex | ⊢ ( 𝑦 ∈ ω → ( ¬ ∅ ∈ ( Fmla ‘ 𝑦 ) → ¬ ∅ ∈ ( Fmla ‘ suc 𝑦 ) ) ) |
| 85 | 3 6 9 12 35 84 | finds | ⊢ ( 𝑁 ∈ ω → ¬ ∅ ∈ ( Fmla ‘ 𝑁 ) ) |
| 86 | df-nel | ⊢ ( ∅ ∉ ( Fmla ‘ 𝑁 ) ↔ ¬ ∅ ∈ ( Fmla ‘ 𝑁 ) ) | |
| 87 | 85 86 | sylibr | ⊢ ( 𝑁 ∈ ω → ∅ ∉ ( Fmla ‘ 𝑁 ) ) |