This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The empty set is not a Godel formula. (Contributed by AV, 19-Nov-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fmlan0 | ⊢ ∅ ∉ ( Fmla ‘ ω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmlaomn0 | ⊢ ( 𝑥 ∈ ω → ∅ ∉ ( Fmla ‘ 𝑥 ) ) | |
| 2 | df-nel | ⊢ ( ∅ ∉ ( Fmla ‘ 𝑥 ) ↔ ¬ ∅ ∈ ( Fmla ‘ 𝑥 ) ) | |
| 3 | 1 2 | sylib | ⊢ ( 𝑥 ∈ ω → ¬ ∅ ∈ ( Fmla ‘ 𝑥 ) ) |
| 4 | 3 | nrex | ⊢ ¬ ∃ 𝑥 ∈ ω ∅ ∈ ( Fmla ‘ 𝑥 ) |
| 5 | df-nel | ⊢ ( ∅ ∉ ( Fmla ‘ ω ) ↔ ¬ ∅ ∈ ( Fmla ‘ ω ) ) | |
| 6 | fmla | ⊢ ( Fmla ‘ ω ) = ∪ 𝑥 ∈ ω ( Fmla ‘ 𝑥 ) | |
| 7 | 6 | eleq2i | ⊢ ( ∅ ∈ ( Fmla ‘ ω ) ↔ ∅ ∈ ∪ 𝑥 ∈ ω ( Fmla ‘ 𝑥 ) ) |
| 8 | eliun | ⊢ ( ∅ ∈ ∪ 𝑥 ∈ ω ( Fmla ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ ω ∅ ∈ ( Fmla ‘ 𝑥 ) ) | |
| 9 | 7 8 | bitri | ⊢ ( ∅ ∈ ( Fmla ‘ ω ) ↔ ∃ 𝑥 ∈ ω ∅ ∈ ( Fmla ‘ 𝑥 ) ) |
| 10 | 5 9 | xchbinx | ⊢ ( ∅ ∉ ( Fmla ‘ ω ) ↔ ¬ ∃ 𝑥 ∈ ω ∅ ∈ ( Fmla ‘ 𝑥 ) ) |
| 11 | 4 10 | mpbir | ⊢ ∅ ∉ ( Fmla ‘ ω ) |