This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The floor of an odd integer divided by 4. (Contributed by AV, 17-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flodddiv4 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 = ( ( 2 · 𝑀 ) + 1 ) ) → ( ⌊ ‘ ( 𝑁 / 4 ) ) = if ( 2 ∥ 𝑀 , ( 𝑀 / 2 ) , ( ( 𝑀 − 1 ) / 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | ⊢ ( 𝑁 = ( ( 2 · 𝑀 ) + 1 ) → ( 𝑁 / 4 ) = ( ( ( 2 · 𝑀 ) + 1 ) / 4 ) ) | |
| 2 | 2cnd | ⊢ ( 𝑀 ∈ ℤ → 2 ∈ ℂ ) | |
| 3 | zcn | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) | |
| 4 | 2 3 | mulcld | ⊢ ( 𝑀 ∈ ℤ → ( 2 · 𝑀 ) ∈ ℂ ) |
| 5 | 1cnd | ⊢ ( 𝑀 ∈ ℤ → 1 ∈ ℂ ) | |
| 6 | 4cn | ⊢ 4 ∈ ℂ | |
| 7 | 4ne0 | ⊢ 4 ≠ 0 | |
| 8 | 6 7 | pm3.2i | ⊢ ( 4 ∈ ℂ ∧ 4 ≠ 0 ) |
| 9 | 8 | a1i | ⊢ ( 𝑀 ∈ ℤ → ( 4 ∈ ℂ ∧ 4 ≠ 0 ) ) |
| 10 | divdir | ⊢ ( ( ( 2 · 𝑀 ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 4 ∈ ℂ ∧ 4 ≠ 0 ) ) → ( ( ( 2 · 𝑀 ) + 1 ) / 4 ) = ( ( ( 2 · 𝑀 ) / 4 ) + ( 1 / 4 ) ) ) | |
| 11 | 4 5 9 10 | syl3anc | ⊢ ( 𝑀 ∈ ℤ → ( ( ( 2 · 𝑀 ) + 1 ) / 4 ) = ( ( ( 2 · 𝑀 ) / 4 ) + ( 1 / 4 ) ) ) |
| 12 | 2t2e4 | ⊢ ( 2 · 2 ) = 4 | |
| 13 | 12 | eqcomi | ⊢ 4 = ( 2 · 2 ) |
| 14 | 13 | a1i | ⊢ ( 𝑀 ∈ ℤ → 4 = ( 2 · 2 ) ) |
| 15 | 14 | oveq2d | ⊢ ( 𝑀 ∈ ℤ → ( ( 2 · 𝑀 ) / 4 ) = ( ( 2 · 𝑀 ) / ( 2 · 2 ) ) ) |
| 16 | 2ne0 | ⊢ 2 ≠ 0 | |
| 17 | 16 | a1i | ⊢ ( 𝑀 ∈ ℤ → 2 ≠ 0 ) |
| 18 | 3 2 2 17 17 | divcan5d | ⊢ ( 𝑀 ∈ ℤ → ( ( 2 · 𝑀 ) / ( 2 · 2 ) ) = ( 𝑀 / 2 ) ) |
| 19 | 15 18 | eqtrd | ⊢ ( 𝑀 ∈ ℤ → ( ( 2 · 𝑀 ) / 4 ) = ( 𝑀 / 2 ) ) |
| 20 | 19 | oveq1d | ⊢ ( 𝑀 ∈ ℤ → ( ( ( 2 · 𝑀 ) / 4 ) + ( 1 / 4 ) ) = ( ( 𝑀 / 2 ) + ( 1 / 4 ) ) ) |
| 21 | 11 20 | eqtrd | ⊢ ( 𝑀 ∈ ℤ → ( ( ( 2 · 𝑀 ) + 1 ) / 4 ) = ( ( 𝑀 / 2 ) + ( 1 / 4 ) ) ) |
| 22 | 1 21 | sylan9eqr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 = ( ( 2 · 𝑀 ) + 1 ) ) → ( 𝑁 / 4 ) = ( ( 𝑀 / 2 ) + ( 1 / 4 ) ) ) |
| 23 | 22 | fveq2d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 = ( ( 2 · 𝑀 ) + 1 ) ) → ( ⌊ ‘ ( 𝑁 / 4 ) ) = ( ⌊ ‘ ( ( 𝑀 / 2 ) + ( 1 / 4 ) ) ) ) |
| 24 | iftrue | ⊢ ( 2 ∥ 𝑀 → if ( 2 ∥ 𝑀 , ( 𝑀 / 2 ) , ( ( 𝑀 − 1 ) / 2 ) ) = ( 𝑀 / 2 ) ) | |
| 25 | 24 | adantr | ⊢ ( ( 2 ∥ 𝑀 ∧ 𝑀 ∈ ℤ ) → if ( 2 ∥ 𝑀 , ( 𝑀 / 2 ) , ( ( 𝑀 − 1 ) / 2 ) ) = ( 𝑀 / 2 ) ) |
| 26 | 1re | ⊢ 1 ∈ ℝ | |
| 27 | 0le1 | ⊢ 0 ≤ 1 | |
| 28 | 4re | ⊢ 4 ∈ ℝ | |
| 29 | 4pos | ⊢ 0 < 4 | |
| 30 | divge0 | ⊢ ( ( ( 1 ∈ ℝ ∧ 0 ≤ 1 ) ∧ ( 4 ∈ ℝ ∧ 0 < 4 ) ) → 0 ≤ ( 1 / 4 ) ) | |
| 31 | 26 27 28 29 30 | mp4an | ⊢ 0 ≤ ( 1 / 4 ) |
| 32 | 1lt4 | ⊢ 1 < 4 | |
| 33 | recgt1 | ⊢ ( ( 4 ∈ ℝ ∧ 0 < 4 ) → ( 1 < 4 ↔ ( 1 / 4 ) < 1 ) ) | |
| 34 | 28 29 33 | mp2an | ⊢ ( 1 < 4 ↔ ( 1 / 4 ) < 1 ) |
| 35 | 32 34 | mpbi | ⊢ ( 1 / 4 ) < 1 |
| 36 | 31 35 | pm3.2i | ⊢ ( 0 ≤ ( 1 / 4 ) ∧ ( 1 / 4 ) < 1 ) |
| 37 | evend2 | ⊢ ( 𝑀 ∈ ℤ → ( 2 ∥ 𝑀 ↔ ( 𝑀 / 2 ) ∈ ℤ ) ) | |
| 38 | 37 | biimpac | ⊢ ( ( 2 ∥ 𝑀 ∧ 𝑀 ∈ ℤ ) → ( 𝑀 / 2 ) ∈ ℤ ) |
| 39 | 4nn | ⊢ 4 ∈ ℕ | |
| 40 | nnrecre | ⊢ ( 4 ∈ ℕ → ( 1 / 4 ) ∈ ℝ ) | |
| 41 | 39 40 | ax-mp | ⊢ ( 1 / 4 ) ∈ ℝ |
| 42 | flbi2 | ⊢ ( ( ( 𝑀 / 2 ) ∈ ℤ ∧ ( 1 / 4 ) ∈ ℝ ) → ( ( ⌊ ‘ ( ( 𝑀 / 2 ) + ( 1 / 4 ) ) ) = ( 𝑀 / 2 ) ↔ ( 0 ≤ ( 1 / 4 ) ∧ ( 1 / 4 ) < 1 ) ) ) | |
| 43 | 38 41 42 | sylancl | ⊢ ( ( 2 ∥ 𝑀 ∧ 𝑀 ∈ ℤ ) → ( ( ⌊ ‘ ( ( 𝑀 / 2 ) + ( 1 / 4 ) ) ) = ( 𝑀 / 2 ) ↔ ( 0 ≤ ( 1 / 4 ) ∧ ( 1 / 4 ) < 1 ) ) ) |
| 44 | 36 43 | mpbiri | ⊢ ( ( 2 ∥ 𝑀 ∧ 𝑀 ∈ ℤ ) → ( ⌊ ‘ ( ( 𝑀 / 2 ) + ( 1 / 4 ) ) ) = ( 𝑀 / 2 ) ) |
| 45 | 25 44 | eqtr4d | ⊢ ( ( 2 ∥ 𝑀 ∧ 𝑀 ∈ ℤ ) → if ( 2 ∥ 𝑀 , ( 𝑀 / 2 ) , ( ( 𝑀 − 1 ) / 2 ) ) = ( ⌊ ‘ ( ( 𝑀 / 2 ) + ( 1 / 4 ) ) ) ) |
| 46 | iffalse | ⊢ ( ¬ 2 ∥ 𝑀 → if ( 2 ∥ 𝑀 , ( 𝑀 / 2 ) , ( ( 𝑀 − 1 ) / 2 ) ) = ( ( 𝑀 − 1 ) / 2 ) ) | |
| 47 | 46 | adantr | ⊢ ( ( ¬ 2 ∥ 𝑀 ∧ 𝑀 ∈ ℤ ) → if ( 2 ∥ 𝑀 , ( 𝑀 / 2 ) , ( ( 𝑀 − 1 ) / 2 ) ) = ( ( 𝑀 − 1 ) / 2 ) ) |
| 48 | odd2np1 | ⊢ ( 𝑀 ∈ ℤ → ( ¬ 2 ∥ 𝑀 ↔ ∃ 𝑥 ∈ ℤ ( ( 2 · 𝑥 ) + 1 ) = 𝑀 ) ) | |
| 49 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 50 | 2cnne0 | ⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) | |
| 51 | divcan5 | ⊢ ( ( 1 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( 2 · 1 ) / ( 2 · 2 ) ) = ( 1 / 2 ) ) | |
| 52 | 49 50 50 51 | mp3an | ⊢ ( ( 2 · 1 ) / ( 2 · 2 ) ) = ( 1 / 2 ) |
| 53 | 2t1e2 | ⊢ ( 2 · 1 ) = 2 | |
| 54 | 53 12 | oveq12i | ⊢ ( ( 2 · 1 ) / ( 2 · 2 ) ) = ( 2 / 4 ) |
| 55 | 52 54 | eqtr3i | ⊢ ( 1 / 2 ) = ( 2 / 4 ) |
| 56 | 55 | oveq1i | ⊢ ( ( 1 / 2 ) + ( 1 / 4 ) ) = ( ( 2 / 4 ) + ( 1 / 4 ) ) |
| 57 | 2cn | ⊢ 2 ∈ ℂ | |
| 58 | 57 49 6 7 | divdiri | ⊢ ( ( 2 + 1 ) / 4 ) = ( ( 2 / 4 ) + ( 1 / 4 ) ) |
| 59 | 2p1e3 | ⊢ ( 2 + 1 ) = 3 | |
| 60 | 59 | oveq1i | ⊢ ( ( 2 + 1 ) / 4 ) = ( 3 / 4 ) |
| 61 | 56 58 60 | 3eqtr2i | ⊢ ( ( 1 / 2 ) + ( 1 / 4 ) ) = ( 3 / 4 ) |
| 62 | 61 | a1i | ⊢ ( 𝑥 ∈ ℤ → ( ( 1 / 2 ) + ( 1 / 4 ) ) = ( 3 / 4 ) ) |
| 63 | 62 | oveq2d | ⊢ ( 𝑥 ∈ ℤ → ( 𝑥 + ( ( 1 / 2 ) + ( 1 / 4 ) ) ) = ( 𝑥 + ( 3 / 4 ) ) ) |
| 64 | 63 | fveq2d | ⊢ ( 𝑥 ∈ ℤ → ( ⌊ ‘ ( 𝑥 + ( ( 1 / 2 ) + ( 1 / 4 ) ) ) ) = ( ⌊ ‘ ( 𝑥 + ( 3 / 4 ) ) ) ) |
| 65 | 3re | ⊢ 3 ∈ ℝ | |
| 66 | 0re | ⊢ 0 ∈ ℝ | |
| 67 | 3pos | ⊢ 0 < 3 | |
| 68 | 66 65 67 | ltleii | ⊢ 0 ≤ 3 |
| 69 | divge0 | ⊢ ( ( ( 3 ∈ ℝ ∧ 0 ≤ 3 ) ∧ ( 4 ∈ ℝ ∧ 0 < 4 ) ) → 0 ≤ ( 3 / 4 ) ) | |
| 70 | 65 68 28 29 69 | mp4an | ⊢ 0 ≤ ( 3 / 4 ) |
| 71 | 3lt4 | ⊢ 3 < 4 | |
| 72 | nnrp | ⊢ ( 4 ∈ ℕ → 4 ∈ ℝ+ ) | |
| 73 | 39 72 | ax-mp | ⊢ 4 ∈ ℝ+ |
| 74 | divlt1lt | ⊢ ( ( 3 ∈ ℝ ∧ 4 ∈ ℝ+ ) → ( ( 3 / 4 ) < 1 ↔ 3 < 4 ) ) | |
| 75 | 65 73 74 | mp2an | ⊢ ( ( 3 / 4 ) < 1 ↔ 3 < 4 ) |
| 76 | 71 75 | mpbir | ⊢ ( 3 / 4 ) < 1 |
| 77 | 70 76 | pm3.2i | ⊢ ( 0 ≤ ( 3 / 4 ) ∧ ( 3 / 4 ) < 1 ) |
| 78 | 65 28 7 | redivcli | ⊢ ( 3 / 4 ) ∈ ℝ |
| 79 | flbi2 | ⊢ ( ( 𝑥 ∈ ℤ ∧ ( 3 / 4 ) ∈ ℝ ) → ( ( ⌊ ‘ ( 𝑥 + ( 3 / 4 ) ) ) = 𝑥 ↔ ( 0 ≤ ( 3 / 4 ) ∧ ( 3 / 4 ) < 1 ) ) ) | |
| 80 | 78 79 | mpan2 | ⊢ ( 𝑥 ∈ ℤ → ( ( ⌊ ‘ ( 𝑥 + ( 3 / 4 ) ) ) = 𝑥 ↔ ( 0 ≤ ( 3 / 4 ) ∧ ( 3 / 4 ) < 1 ) ) ) |
| 81 | 77 80 | mpbiri | ⊢ ( 𝑥 ∈ ℤ → ( ⌊ ‘ ( 𝑥 + ( 3 / 4 ) ) ) = 𝑥 ) |
| 82 | 64 81 | eqtrd | ⊢ ( 𝑥 ∈ ℤ → ( ⌊ ‘ ( 𝑥 + ( ( 1 / 2 ) + ( 1 / 4 ) ) ) ) = 𝑥 ) |
| 83 | 82 | adantr | ⊢ ( ( 𝑥 ∈ ℤ ∧ ( ( 2 · 𝑥 ) + 1 ) = 𝑀 ) → ( ⌊ ‘ ( 𝑥 + ( ( 1 / 2 ) + ( 1 / 4 ) ) ) ) = 𝑥 ) |
| 84 | oveq1 | ⊢ ( 𝑀 = ( ( 2 · 𝑥 ) + 1 ) → ( 𝑀 / 2 ) = ( ( ( 2 · 𝑥 ) + 1 ) / 2 ) ) | |
| 85 | 84 | eqcoms | ⊢ ( ( ( 2 · 𝑥 ) + 1 ) = 𝑀 → ( 𝑀 / 2 ) = ( ( ( 2 · 𝑥 ) + 1 ) / 2 ) ) |
| 86 | 2z | ⊢ 2 ∈ ℤ | |
| 87 | 86 | a1i | ⊢ ( 𝑥 ∈ ℤ → 2 ∈ ℤ ) |
| 88 | id | ⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℤ ) | |
| 89 | 87 88 | zmulcld | ⊢ ( 𝑥 ∈ ℤ → ( 2 · 𝑥 ) ∈ ℤ ) |
| 90 | 89 | zcnd | ⊢ ( 𝑥 ∈ ℤ → ( 2 · 𝑥 ) ∈ ℂ ) |
| 91 | 1cnd | ⊢ ( 𝑥 ∈ ℤ → 1 ∈ ℂ ) | |
| 92 | 50 | a1i | ⊢ ( 𝑥 ∈ ℤ → ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) |
| 93 | divdir | ⊢ ( ( ( 2 · 𝑥 ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( ( 2 · 𝑥 ) + 1 ) / 2 ) = ( ( ( 2 · 𝑥 ) / 2 ) + ( 1 / 2 ) ) ) | |
| 94 | 90 91 92 93 | syl3anc | ⊢ ( 𝑥 ∈ ℤ → ( ( ( 2 · 𝑥 ) + 1 ) / 2 ) = ( ( ( 2 · 𝑥 ) / 2 ) + ( 1 / 2 ) ) ) |
| 95 | zcn | ⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) | |
| 96 | 2cnd | ⊢ ( 𝑥 ∈ ℤ → 2 ∈ ℂ ) | |
| 97 | 16 | a1i | ⊢ ( 𝑥 ∈ ℤ → 2 ≠ 0 ) |
| 98 | 95 96 97 | divcan3d | ⊢ ( 𝑥 ∈ ℤ → ( ( 2 · 𝑥 ) / 2 ) = 𝑥 ) |
| 99 | 98 | oveq1d | ⊢ ( 𝑥 ∈ ℤ → ( ( ( 2 · 𝑥 ) / 2 ) + ( 1 / 2 ) ) = ( 𝑥 + ( 1 / 2 ) ) ) |
| 100 | 94 99 | eqtrd | ⊢ ( 𝑥 ∈ ℤ → ( ( ( 2 · 𝑥 ) + 1 ) / 2 ) = ( 𝑥 + ( 1 / 2 ) ) ) |
| 101 | 85 100 | sylan9eqr | ⊢ ( ( 𝑥 ∈ ℤ ∧ ( ( 2 · 𝑥 ) + 1 ) = 𝑀 ) → ( 𝑀 / 2 ) = ( 𝑥 + ( 1 / 2 ) ) ) |
| 102 | 101 | oveq1d | ⊢ ( ( 𝑥 ∈ ℤ ∧ ( ( 2 · 𝑥 ) + 1 ) = 𝑀 ) → ( ( 𝑀 / 2 ) + ( 1 / 4 ) ) = ( ( 𝑥 + ( 1 / 2 ) ) + ( 1 / 4 ) ) ) |
| 103 | halfcn | ⊢ ( 1 / 2 ) ∈ ℂ | |
| 104 | 103 | a1i | ⊢ ( 𝑥 ∈ ℤ → ( 1 / 2 ) ∈ ℂ ) |
| 105 | 6 7 | reccli | ⊢ ( 1 / 4 ) ∈ ℂ |
| 106 | 105 | a1i | ⊢ ( 𝑥 ∈ ℤ → ( 1 / 4 ) ∈ ℂ ) |
| 107 | 95 104 106 | addassd | ⊢ ( 𝑥 ∈ ℤ → ( ( 𝑥 + ( 1 / 2 ) ) + ( 1 / 4 ) ) = ( 𝑥 + ( ( 1 / 2 ) + ( 1 / 4 ) ) ) ) |
| 108 | 107 | adantr | ⊢ ( ( 𝑥 ∈ ℤ ∧ ( ( 2 · 𝑥 ) + 1 ) = 𝑀 ) → ( ( 𝑥 + ( 1 / 2 ) ) + ( 1 / 4 ) ) = ( 𝑥 + ( ( 1 / 2 ) + ( 1 / 4 ) ) ) ) |
| 109 | 102 108 | eqtrd | ⊢ ( ( 𝑥 ∈ ℤ ∧ ( ( 2 · 𝑥 ) + 1 ) = 𝑀 ) → ( ( 𝑀 / 2 ) + ( 1 / 4 ) ) = ( 𝑥 + ( ( 1 / 2 ) + ( 1 / 4 ) ) ) ) |
| 110 | 109 | fveq2d | ⊢ ( ( 𝑥 ∈ ℤ ∧ ( ( 2 · 𝑥 ) + 1 ) = 𝑀 ) → ( ⌊ ‘ ( ( 𝑀 / 2 ) + ( 1 / 4 ) ) ) = ( ⌊ ‘ ( 𝑥 + ( ( 1 / 2 ) + ( 1 / 4 ) ) ) ) ) |
| 111 | oveq1 | ⊢ ( 𝑀 = ( ( 2 · 𝑥 ) + 1 ) → ( 𝑀 − 1 ) = ( ( ( 2 · 𝑥 ) + 1 ) − 1 ) ) | |
| 112 | 111 | eqcoms | ⊢ ( ( ( 2 · 𝑥 ) + 1 ) = 𝑀 → ( 𝑀 − 1 ) = ( ( ( 2 · 𝑥 ) + 1 ) − 1 ) ) |
| 113 | pncan1 | ⊢ ( ( 2 · 𝑥 ) ∈ ℂ → ( ( ( 2 · 𝑥 ) + 1 ) − 1 ) = ( 2 · 𝑥 ) ) | |
| 114 | 90 113 | syl | ⊢ ( 𝑥 ∈ ℤ → ( ( ( 2 · 𝑥 ) + 1 ) − 1 ) = ( 2 · 𝑥 ) ) |
| 115 | 112 114 | sylan9eqr | ⊢ ( ( 𝑥 ∈ ℤ ∧ ( ( 2 · 𝑥 ) + 1 ) = 𝑀 ) → ( 𝑀 − 1 ) = ( 2 · 𝑥 ) ) |
| 116 | 115 | oveq1d | ⊢ ( ( 𝑥 ∈ ℤ ∧ ( ( 2 · 𝑥 ) + 1 ) = 𝑀 ) → ( ( 𝑀 − 1 ) / 2 ) = ( ( 2 · 𝑥 ) / 2 ) ) |
| 117 | 98 | adantr | ⊢ ( ( 𝑥 ∈ ℤ ∧ ( ( 2 · 𝑥 ) + 1 ) = 𝑀 ) → ( ( 2 · 𝑥 ) / 2 ) = 𝑥 ) |
| 118 | 116 117 | eqtrd | ⊢ ( ( 𝑥 ∈ ℤ ∧ ( ( 2 · 𝑥 ) + 1 ) = 𝑀 ) → ( ( 𝑀 − 1 ) / 2 ) = 𝑥 ) |
| 119 | 83 110 118 | 3eqtr4rd | ⊢ ( ( 𝑥 ∈ ℤ ∧ ( ( 2 · 𝑥 ) + 1 ) = 𝑀 ) → ( ( 𝑀 − 1 ) / 2 ) = ( ⌊ ‘ ( ( 𝑀 / 2 ) + ( 1 / 4 ) ) ) ) |
| 120 | 119 | ex | ⊢ ( 𝑥 ∈ ℤ → ( ( ( 2 · 𝑥 ) + 1 ) = 𝑀 → ( ( 𝑀 − 1 ) / 2 ) = ( ⌊ ‘ ( ( 𝑀 / 2 ) + ( 1 / 4 ) ) ) ) ) |
| 121 | 120 | adantl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ) → ( ( ( 2 · 𝑥 ) + 1 ) = 𝑀 → ( ( 𝑀 − 1 ) / 2 ) = ( ⌊ ‘ ( ( 𝑀 / 2 ) + ( 1 / 4 ) ) ) ) ) |
| 122 | 121 | rexlimdva | ⊢ ( 𝑀 ∈ ℤ → ( ∃ 𝑥 ∈ ℤ ( ( 2 · 𝑥 ) + 1 ) = 𝑀 → ( ( 𝑀 − 1 ) / 2 ) = ( ⌊ ‘ ( ( 𝑀 / 2 ) + ( 1 / 4 ) ) ) ) ) |
| 123 | 48 122 | sylbid | ⊢ ( 𝑀 ∈ ℤ → ( ¬ 2 ∥ 𝑀 → ( ( 𝑀 − 1 ) / 2 ) = ( ⌊ ‘ ( ( 𝑀 / 2 ) + ( 1 / 4 ) ) ) ) ) |
| 124 | 123 | impcom | ⊢ ( ( ¬ 2 ∥ 𝑀 ∧ 𝑀 ∈ ℤ ) → ( ( 𝑀 − 1 ) / 2 ) = ( ⌊ ‘ ( ( 𝑀 / 2 ) + ( 1 / 4 ) ) ) ) |
| 125 | 47 124 | eqtrd | ⊢ ( ( ¬ 2 ∥ 𝑀 ∧ 𝑀 ∈ ℤ ) → if ( 2 ∥ 𝑀 , ( 𝑀 / 2 ) , ( ( 𝑀 − 1 ) / 2 ) ) = ( ⌊ ‘ ( ( 𝑀 / 2 ) + ( 1 / 4 ) ) ) ) |
| 126 | 45 125 | pm2.61ian | ⊢ ( 𝑀 ∈ ℤ → if ( 2 ∥ 𝑀 , ( 𝑀 / 2 ) , ( ( 𝑀 − 1 ) / 2 ) ) = ( ⌊ ‘ ( ( 𝑀 / 2 ) + ( 1 / 4 ) ) ) ) |
| 127 | 126 | eqcomd | ⊢ ( 𝑀 ∈ ℤ → ( ⌊ ‘ ( ( 𝑀 / 2 ) + ( 1 / 4 ) ) ) = if ( 2 ∥ 𝑀 , ( 𝑀 / 2 ) , ( ( 𝑀 − 1 ) / 2 ) ) ) |
| 128 | 127 | adantr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 = ( ( 2 · 𝑀 ) + 1 ) ) → ( ⌊ ‘ ( ( 𝑀 / 2 ) + ( 1 / 4 ) ) ) = if ( 2 ∥ 𝑀 , ( 𝑀 / 2 ) , ( ( 𝑀 − 1 ) / 2 ) ) ) |
| 129 | 23 128 | eqtrd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 = ( ( 2 · 𝑀 ) + 1 ) ) → ( ⌊ ‘ ( 𝑁 / 4 ) ) = if ( 2 ∥ 𝑀 , ( 𝑀 / 2 ) , ( ( 𝑀 − 1 ) / 2 ) ) ) |