This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition equivalent to floor. (Contributed by NM, 15-Aug-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flbi2 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐹 ∈ ℝ ) → ( ( ⌊ ‘ ( 𝑁 + 𝐹 ) ) = 𝑁 ↔ ( 0 ≤ 𝐹 ∧ 𝐹 < 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 2 | readdcl | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝐹 ∈ ℝ ) → ( 𝑁 + 𝐹 ) ∈ ℝ ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐹 ∈ ℝ ) → ( 𝑁 + 𝐹 ) ∈ ℝ ) |
| 4 | simpl | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐹 ∈ ℝ ) → 𝑁 ∈ ℤ ) | |
| 5 | flbi | ⊢ ( ( ( 𝑁 + 𝐹 ) ∈ ℝ ∧ 𝑁 ∈ ℤ ) → ( ( ⌊ ‘ ( 𝑁 + 𝐹 ) ) = 𝑁 ↔ ( 𝑁 ≤ ( 𝑁 + 𝐹 ) ∧ ( 𝑁 + 𝐹 ) < ( 𝑁 + 1 ) ) ) ) | |
| 6 | 3 4 5 | syl2anc | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐹 ∈ ℝ ) → ( ( ⌊ ‘ ( 𝑁 + 𝐹 ) ) = 𝑁 ↔ ( 𝑁 ≤ ( 𝑁 + 𝐹 ) ∧ ( 𝑁 + 𝐹 ) < ( 𝑁 + 1 ) ) ) ) |
| 7 | addge01 | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝐹 ∈ ℝ ) → ( 0 ≤ 𝐹 ↔ 𝑁 ≤ ( 𝑁 + 𝐹 ) ) ) | |
| 8 | 1re | ⊢ 1 ∈ ℝ | |
| 9 | ltadd2 | ⊢ ( ( 𝐹 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝐹 < 1 ↔ ( 𝑁 + 𝐹 ) < ( 𝑁 + 1 ) ) ) | |
| 10 | 8 9 | mp3an2 | ⊢ ( ( 𝐹 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝐹 < 1 ↔ ( 𝑁 + 𝐹 ) < ( 𝑁 + 1 ) ) ) |
| 11 | 10 | ancoms | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝐹 ∈ ℝ ) → ( 𝐹 < 1 ↔ ( 𝑁 + 𝐹 ) < ( 𝑁 + 1 ) ) ) |
| 12 | 7 11 | anbi12d | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝐹 ∈ ℝ ) → ( ( 0 ≤ 𝐹 ∧ 𝐹 < 1 ) ↔ ( 𝑁 ≤ ( 𝑁 + 𝐹 ) ∧ ( 𝑁 + 𝐹 ) < ( 𝑁 + 1 ) ) ) ) |
| 13 | 1 12 | sylan | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐹 ∈ ℝ ) → ( ( 0 ≤ 𝐹 ∧ 𝐹 < 1 ) ↔ ( 𝑁 ≤ ( 𝑁 + 𝐹 ) ∧ ( 𝑁 + 𝐹 ) < ( 𝑁 + 1 ) ) ) ) |
| 14 | 6 13 | bitr4d | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐹 ∈ ℝ ) → ( ( ⌊ ‘ ( 𝑁 + 𝐹 ) ) = 𝑁 ↔ ( 0 ≤ 𝐹 ∧ 𝐹 < 1 ) ) ) |