This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The floor of an integer divided by a nonzero integer not dividing the first integer is less than the integer divided by the positive integer. (Contributed by AV, 4-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fldivndvdslt | ⊢ ( ( 𝐾 ∈ ℤ ∧ ( 𝐿 ∈ ℤ ∧ 𝐿 ≠ 0 ) ∧ ¬ 𝐿 ∥ 𝐾 ) → ( ⌊ ‘ ( 𝐾 / 𝐿 ) ) < ( 𝐾 / 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | ⊢ ( 𝐾 ∈ ℤ → 𝐾 ∈ ℝ ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐾 ∈ ℤ ∧ ( 𝐿 ∈ ℤ ∧ 𝐿 ≠ 0 ) ) → 𝐾 ∈ ℝ ) |
| 3 | zre | ⊢ ( 𝐿 ∈ ℤ → 𝐿 ∈ ℝ ) | |
| 4 | 3 | ad2antrl | ⊢ ( ( 𝐾 ∈ ℤ ∧ ( 𝐿 ∈ ℤ ∧ 𝐿 ≠ 0 ) ) → 𝐿 ∈ ℝ ) |
| 5 | simprr | ⊢ ( ( 𝐾 ∈ ℤ ∧ ( 𝐿 ∈ ℤ ∧ 𝐿 ≠ 0 ) ) → 𝐿 ≠ 0 ) | |
| 6 | 2 4 5 | redivcld | ⊢ ( ( 𝐾 ∈ ℤ ∧ ( 𝐿 ∈ ℤ ∧ 𝐿 ≠ 0 ) ) → ( 𝐾 / 𝐿 ) ∈ ℝ ) |
| 7 | 6 | 3adant3 | ⊢ ( ( 𝐾 ∈ ℤ ∧ ( 𝐿 ∈ ℤ ∧ 𝐿 ≠ 0 ) ∧ ¬ 𝐿 ∥ 𝐾 ) → ( 𝐾 / 𝐿 ) ∈ ℝ ) |
| 8 | simprl | ⊢ ( ( 𝐾 ∈ ℤ ∧ ( 𝐿 ∈ ℤ ∧ 𝐿 ≠ 0 ) ) → 𝐿 ∈ ℤ ) | |
| 9 | simpl | ⊢ ( ( 𝐾 ∈ ℤ ∧ ( 𝐿 ∈ ℤ ∧ 𝐿 ≠ 0 ) ) → 𝐾 ∈ ℤ ) | |
| 10 | dvdsval2 | ⊢ ( ( 𝐿 ∈ ℤ ∧ 𝐿 ≠ 0 ∧ 𝐾 ∈ ℤ ) → ( 𝐿 ∥ 𝐾 ↔ ( 𝐾 / 𝐿 ) ∈ ℤ ) ) | |
| 11 | 8 5 9 10 | syl3anc | ⊢ ( ( 𝐾 ∈ ℤ ∧ ( 𝐿 ∈ ℤ ∧ 𝐿 ≠ 0 ) ) → ( 𝐿 ∥ 𝐾 ↔ ( 𝐾 / 𝐿 ) ∈ ℤ ) ) |
| 12 | 11 | notbid | ⊢ ( ( 𝐾 ∈ ℤ ∧ ( 𝐿 ∈ ℤ ∧ 𝐿 ≠ 0 ) ) → ( ¬ 𝐿 ∥ 𝐾 ↔ ¬ ( 𝐾 / 𝐿 ) ∈ ℤ ) ) |
| 13 | 12 | biimp3a | ⊢ ( ( 𝐾 ∈ ℤ ∧ ( 𝐿 ∈ ℤ ∧ 𝐿 ≠ 0 ) ∧ ¬ 𝐿 ∥ 𝐾 ) → ¬ ( 𝐾 / 𝐿 ) ∈ ℤ ) |
| 14 | flltnz | ⊢ ( ( ( 𝐾 / 𝐿 ) ∈ ℝ ∧ ¬ ( 𝐾 / 𝐿 ) ∈ ℤ ) → ( ⌊ ‘ ( 𝐾 / 𝐿 ) ) < ( 𝐾 / 𝐿 ) ) | |
| 15 | 7 13 14 | syl2anc | ⊢ ( ( 𝐾 ∈ ℤ ∧ ( 𝐿 ∈ ℤ ∧ 𝐿 ≠ 0 ) ∧ ¬ 𝐿 ∥ 𝐾 ) → ( ⌊ ‘ ( 𝐾 / 𝐿 ) ) < ( 𝐾 / 𝐿 ) ) |