This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A is a member of the filter, then the filter truncated to A is a subset of the original filter. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | trfilss | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ( 𝐹 ↾t 𝐴 ) ⊆ 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restval | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ( 𝐹 ↾t 𝐴 ) = ran ( 𝑥 ∈ 𝐹 ↦ ( 𝑥 ∩ 𝐴 ) ) ) | |
| 2 | filin | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐹 ∧ 𝐴 ∈ 𝐹 ) → ( 𝑥 ∩ 𝐴 ) ∈ 𝐹 ) | |
| 3 | 2 | 3expa | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐹 ) ∧ 𝐴 ∈ 𝐹 ) → ( 𝑥 ∩ 𝐴 ) ∈ 𝐹 ) |
| 4 | 3 | an32s | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝐹 ) → ( 𝑥 ∩ 𝐴 ) ∈ 𝐹 ) |
| 5 | 4 | fmpttd | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ( 𝑥 ∈ 𝐹 ↦ ( 𝑥 ∩ 𝐴 ) ) : 𝐹 ⟶ 𝐹 ) |
| 6 | 5 | frnd | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ran ( 𝑥 ∈ 𝐹 ↦ ( 𝑥 ∩ 𝐴 ) ) ⊆ 𝐹 ) |
| 7 | 1 6 | eqsstrd | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ( 𝐹 ↾t 𝐴 ) ⊆ 𝐹 ) |