This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem finsumvtxdg2size

Description: The sum of the degrees of all vertices of a finite pseudograph of finite size is twice the size of the pseudograph. See equation (1) in section I.1 in Bollobas p. 4. Here, the "proof" is simply the statement "Since each edge has two endvertices, the sum of the degrees is exactly twice the number of edges". The formal proof of this theorem (for pseudographs) is much more complicated, taking also the used auxiliary theorems into account. The proof for a (finite) simple graph (see fusgr1th ) would be shorter, but nevertheless still laborious. Although this theorem would hold also for infinite pseudographs and pseudographs of infinite size, the proof of this most general version (see theorem "sumvtxdg2size" below) would require many more auxiliary theorems (e.g., the extension of the sum sum_ over an arbitrary set).

I dedicate this theorem and its proof to Norman Megill, who deceased too early on December 9, 2021. This proof is an example for the rigor which was the main motivation for Norman Megill to invent and develop Metamath, see section 1.1.6 "Rigor" on page 19 of the Metamath book: "... it is usually assumed in mathematical literature that the person reading the proof is a mathematician familiar with the specialty being described, and that the missing steps are obvious to such a reader or at least the reader is capable of filling them in." I filled in the missing steps of Bollobas' proof as Norm would have liked it... (Contributed by Alexander van der Vekens, 19-Dec-2021)

Ref Expression
Hypotheses sumvtxdg2size.v 𝑉 = ( Vtx ‘ 𝐺 )
sumvtxdg2size.i 𝐼 = ( iEdg ‘ 𝐺 )
sumvtxdg2size.d 𝐷 = ( VtxDeg ‘ 𝐺 )
Assertion finsumvtxdg2size ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → Σ 𝑣𝑉 ( 𝐷𝑣 ) = ( 2 · ( ♯ ‘ 𝐼 ) ) )

Proof

Step Hyp Ref Expression
1 sumvtxdg2size.v 𝑉 = ( Vtx ‘ 𝐺 )
2 sumvtxdg2size.i 𝐼 = ( iEdg ‘ 𝐺 )
3 sumvtxdg2size.d 𝐷 = ( VtxDeg ‘ 𝐺 )
4 upgrop ( 𝐺 ∈ UPGraph → ⟨ ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) ⟩ ∈ UPGraph )
5 fvex ( iEdg ‘ 𝐺 ) ∈ V
6 fvex ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∈ V
7 6 resex ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ∈ V
8 eleq1 ( 𝑒 = ( iEdg ‘ 𝐺 ) → ( 𝑒 ∈ Fin ↔ ( iEdg ‘ 𝐺 ) ∈ Fin ) )
9 8 adantl ( ( 𝑘 = ( Vtx ‘ 𝐺 ) ∧ 𝑒 = ( iEdg ‘ 𝐺 ) ) → ( 𝑒 ∈ Fin ↔ ( iEdg ‘ 𝐺 ) ∈ Fin ) )
10 simpl ( ( 𝑘 = ( Vtx ‘ 𝐺 ) ∧ 𝑒 = ( iEdg ‘ 𝐺 ) ) → 𝑘 = ( Vtx ‘ 𝐺 ) )
11 oveq12 ( ( 𝑘 = ( Vtx ‘ 𝐺 ) ∧ 𝑒 = ( iEdg ‘ 𝐺 ) ) → ( 𝑘 VtxDeg 𝑒 ) = ( ( Vtx ‘ 𝐺 ) VtxDeg ( iEdg ‘ 𝐺 ) ) )
12 11 fveq1d ( ( 𝑘 = ( Vtx ‘ 𝐺 ) ∧ 𝑒 = ( iEdg ‘ 𝐺 ) ) → ( ( 𝑘 VtxDeg 𝑒 ) ‘ 𝑣 ) = ( ( ( Vtx ‘ 𝐺 ) VtxDeg ( iEdg ‘ 𝐺 ) ) ‘ 𝑣 ) )
13 12 adantr ( ( ( 𝑘 = ( Vtx ‘ 𝐺 ) ∧ 𝑒 = ( iEdg ‘ 𝐺 ) ) ∧ 𝑣𝑘 ) → ( ( 𝑘 VtxDeg 𝑒 ) ‘ 𝑣 ) = ( ( ( Vtx ‘ 𝐺 ) VtxDeg ( iEdg ‘ 𝐺 ) ) ‘ 𝑣 ) )
14 10 13 sumeq12dv ( ( 𝑘 = ( Vtx ‘ 𝐺 ) ∧ 𝑒 = ( iEdg ‘ 𝐺 ) ) → Σ 𝑣𝑘 ( ( 𝑘 VtxDeg 𝑒 ) ‘ 𝑣 ) = Σ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( ( ( Vtx ‘ 𝐺 ) VtxDeg ( iEdg ‘ 𝐺 ) ) ‘ 𝑣 ) )
15 fveq2 ( 𝑒 = ( iEdg ‘ 𝐺 ) → ( ♯ ‘ 𝑒 ) = ( ♯ ‘ ( iEdg ‘ 𝐺 ) ) )
16 15 oveq2d ( 𝑒 = ( iEdg ‘ 𝐺 ) → ( 2 · ( ♯ ‘ 𝑒 ) ) = ( 2 · ( ♯ ‘ ( iEdg ‘ 𝐺 ) ) ) )
17 16 adantl ( ( 𝑘 = ( Vtx ‘ 𝐺 ) ∧ 𝑒 = ( iEdg ‘ 𝐺 ) ) → ( 2 · ( ♯ ‘ 𝑒 ) ) = ( 2 · ( ♯ ‘ ( iEdg ‘ 𝐺 ) ) ) )
18 14 17 eqeq12d ( ( 𝑘 = ( Vtx ‘ 𝐺 ) ∧ 𝑒 = ( iEdg ‘ 𝐺 ) ) → ( Σ 𝑣𝑘 ( ( 𝑘 VtxDeg 𝑒 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑒 ) ) ↔ Σ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( ( ( Vtx ‘ 𝐺 ) VtxDeg ( iEdg ‘ 𝐺 ) ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ ( iEdg ‘ 𝐺 ) ) ) ) )
19 9 18 imbi12d ( ( 𝑘 = ( Vtx ‘ 𝐺 ) ∧ 𝑒 = ( iEdg ‘ 𝐺 ) ) → ( ( 𝑒 ∈ Fin → Σ 𝑣𝑘 ( ( 𝑘 VtxDeg 𝑒 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑒 ) ) ) ↔ ( ( iEdg ‘ 𝐺 ) ∈ Fin → Σ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( ( ( Vtx ‘ 𝐺 ) VtxDeg ( iEdg ‘ 𝐺 ) ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ ( iEdg ‘ 𝐺 ) ) ) ) ) )
20 eleq1 ( 𝑒 = 𝑓 → ( 𝑒 ∈ Fin ↔ 𝑓 ∈ Fin ) )
21 20 adantl ( ( 𝑘 = 𝑤𝑒 = 𝑓 ) → ( 𝑒 ∈ Fin ↔ 𝑓 ∈ Fin ) )
22 simpl ( ( 𝑘 = 𝑤𝑒 = 𝑓 ) → 𝑘 = 𝑤 )
23 oveq12 ( ( 𝑘 = 𝑤𝑒 = 𝑓 ) → ( 𝑘 VtxDeg 𝑒 ) = ( 𝑤 VtxDeg 𝑓 ) )
24 df-ov ( 𝑤 VtxDeg 𝑓 ) = ( VtxDeg ‘ ⟨ 𝑤 , 𝑓 ⟩ )
25 23 24 eqtrdi ( ( 𝑘 = 𝑤𝑒 = 𝑓 ) → ( 𝑘 VtxDeg 𝑒 ) = ( VtxDeg ‘ ⟨ 𝑤 , 𝑓 ⟩ ) )
26 25 fveq1d ( ( 𝑘 = 𝑤𝑒 = 𝑓 ) → ( ( 𝑘 VtxDeg 𝑒 ) ‘ 𝑣 ) = ( ( VtxDeg ‘ ⟨ 𝑤 , 𝑓 ⟩ ) ‘ 𝑣 ) )
27 26 adantr ( ( ( 𝑘 = 𝑤𝑒 = 𝑓 ) ∧ 𝑣𝑘 ) → ( ( 𝑘 VtxDeg 𝑒 ) ‘ 𝑣 ) = ( ( VtxDeg ‘ ⟨ 𝑤 , 𝑓 ⟩ ) ‘ 𝑣 ) )
28 22 27 sumeq12dv ( ( 𝑘 = 𝑤𝑒 = 𝑓 ) → Σ 𝑣𝑘 ( ( 𝑘 VtxDeg 𝑒 ) ‘ 𝑣 ) = Σ 𝑣𝑤 ( ( VtxDeg ‘ ⟨ 𝑤 , 𝑓 ⟩ ) ‘ 𝑣 ) )
29 fveq2 ( 𝑒 = 𝑓 → ( ♯ ‘ 𝑒 ) = ( ♯ ‘ 𝑓 ) )
30 29 oveq2d ( 𝑒 = 𝑓 → ( 2 · ( ♯ ‘ 𝑒 ) ) = ( 2 · ( ♯ ‘ 𝑓 ) ) )
31 30 adantl ( ( 𝑘 = 𝑤𝑒 = 𝑓 ) → ( 2 · ( ♯ ‘ 𝑒 ) ) = ( 2 · ( ♯ ‘ 𝑓 ) ) )
32 28 31 eqeq12d ( ( 𝑘 = 𝑤𝑒 = 𝑓 ) → ( Σ 𝑣𝑘 ( ( 𝑘 VtxDeg 𝑒 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑒 ) ) ↔ Σ 𝑣𝑤 ( ( VtxDeg ‘ ⟨ 𝑤 , 𝑓 ⟩ ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑓 ) ) ) )
33 21 32 imbi12d ( ( 𝑘 = 𝑤𝑒 = 𝑓 ) → ( ( 𝑒 ∈ Fin → Σ 𝑣𝑘 ( ( 𝑘 VtxDeg 𝑒 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑒 ) ) ) ↔ ( 𝑓 ∈ Fin → Σ 𝑣𝑤 ( ( VtxDeg ‘ ⟨ 𝑤 , 𝑓 ⟩ ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑓 ) ) ) ) )
34 vex 𝑘 ∈ V
35 vex 𝑒 ∈ V
36 34 35 opvtxfvi ( Vtx ‘ ⟨ 𝑘 , 𝑒 ⟩ ) = 𝑘
37 36 eqcomi 𝑘 = ( Vtx ‘ ⟨ 𝑘 , 𝑒 ⟩ )
38 eqid ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) = ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ )
39 eqid { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } = { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) }
40 eqid ⟨ ( 𝑘 ∖ { 𝑛 } ) , ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ⟩ = ⟨ ( 𝑘 ∖ { 𝑛 } ) , ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ⟩
41 37 38 39 40 upgrres ( ( ⟨ 𝑘 , 𝑒 ⟩ ∈ UPGraph ∧ 𝑛𝑘 ) → ⟨ ( 𝑘 ∖ { 𝑛 } ) , ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ⟩ ∈ UPGraph )
42 eleq1 ( 𝑓 = ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) → ( 𝑓 ∈ Fin ↔ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ∈ Fin ) )
43 42 adantl ( ( 𝑤 = ( 𝑘 ∖ { 𝑛 } ) ∧ 𝑓 = ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ) → ( 𝑓 ∈ Fin ↔ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ∈ Fin ) )
44 simpl ( ( 𝑤 = ( 𝑘 ∖ { 𝑛 } ) ∧ 𝑓 = ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ) → 𝑤 = ( 𝑘 ∖ { 𝑛 } ) )
45 opeq12 ( ( 𝑤 = ( 𝑘 ∖ { 𝑛 } ) ∧ 𝑓 = ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ) → ⟨ 𝑤 , 𝑓 ⟩ = ⟨ ( 𝑘 ∖ { 𝑛 } ) , ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ⟩ )
46 45 fveq2d ( ( 𝑤 = ( 𝑘 ∖ { 𝑛 } ) ∧ 𝑓 = ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ) → ( VtxDeg ‘ ⟨ 𝑤 , 𝑓 ⟩ ) = ( VtxDeg ‘ ⟨ ( 𝑘 ∖ { 𝑛 } ) , ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ⟩ ) )
47 46 fveq1d ( ( 𝑤 = ( 𝑘 ∖ { 𝑛 } ) ∧ 𝑓 = ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ) → ( ( VtxDeg ‘ ⟨ 𝑤 , 𝑓 ⟩ ) ‘ 𝑣 ) = ( ( VtxDeg ‘ ⟨ ( 𝑘 ∖ { 𝑛 } ) , ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ⟩ ) ‘ 𝑣 ) )
48 47 adantr ( ( ( 𝑤 = ( 𝑘 ∖ { 𝑛 } ) ∧ 𝑓 = ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ) ∧ 𝑣𝑤 ) → ( ( VtxDeg ‘ ⟨ 𝑤 , 𝑓 ⟩ ) ‘ 𝑣 ) = ( ( VtxDeg ‘ ⟨ ( 𝑘 ∖ { 𝑛 } ) , ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ⟩ ) ‘ 𝑣 ) )
49 44 48 sumeq12dv ( ( 𝑤 = ( 𝑘 ∖ { 𝑛 } ) ∧ 𝑓 = ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ) → Σ 𝑣𝑤 ( ( VtxDeg ‘ ⟨ 𝑤 , 𝑓 ⟩ ) ‘ 𝑣 ) = Σ 𝑣 ∈ ( 𝑘 ∖ { 𝑛 } ) ( ( VtxDeg ‘ ⟨ ( 𝑘 ∖ { 𝑛 } ) , ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ⟩ ) ‘ 𝑣 ) )
50 fveq2 ( 𝑓 = ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) → ( ♯ ‘ 𝑓 ) = ( ♯ ‘ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ) )
51 50 oveq2d ( 𝑓 = ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) → ( 2 · ( ♯ ‘ 𝑓 ) ) = ( 2 · ( ♯ ‘ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ) ) )
52 51 adantl ( ( 𝑤 = ( 𝑘 ∖ { 𝑛 } ) ∧ 𝑓 = ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ) → ( 2 · ( ♯ ‘ 𝑓 ) ) = ( 2 · ( ♯ ‘ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ) ) )
53 49 52 eqeq12d ( ( 𝑤 = ( 𝑘 ∖ { 𝑛 } ) ∧ 𝑓 = ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ) → ( Σ 𝑣𝑤 ( ( VtxDeg ‘ ⟨ 𝑤 , 𝑓 ⟩ ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑓 ) ) ↔ Σ 𝑣 ∈ ( 𝑘 ∖ { 𝑛 } ) ( ( VtxDeg ‘ ⟨ ( 𝑘 ∖ { 𝑛 } ) , ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ⟩ ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ) ) ) )
54 43 53 imbi12d ( ( 𝑤 = ( 𝑘 ∖ { 𝑛 } ) ∧ 𝑓 = ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ) → ( ( 𝑓 ∈ Fin → Σ 𝑣𝑤 ( ( VtxDeg ‘ ⟨ 𝑤 , 𝑓 ⟩ ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑓 ) ) ) ↔ ( ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ∈ Fin → Σ 𝑣 ∈ ( 𝑘 ∖ { 𝑛 } ) ( ( VtxDeg ‘ ⟨ ( 𝑘 ∖ { 𝑛 } ) , ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ⟩ ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ) ) ) ) )
55 hasheq0 ( 𝑘 ∈ V → ( ( ♯ ‘ 𝑘 ) = 0 ↔ 𝑘 = ∅ ) )
56 55 elv ( ( ♯ ‘ 𝑘 ) = 0 ↔ 𝑘 = ∅ )
57 2t0e0 ( 2 · 0 ) = 0
58 57 a1i ( ( ⟨ 𝑘 , 𝑒 ⟩ ∈ UPGraph ∧ 𝑘 = ∅ ) → ( 2 · 0 ) = 0 )
59 34 35 opiedgfvi ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) = 𝑒
60 59 eqcomi 𝑒 = ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ )
61 upgruhgr ( ⟨ 𝑘 , 𝑒 ⟩ ∈ UPGraph → ⟨ 𝑘 , 𝑒 ⟩ ∈ UHGraph )
62 61 adantr ( ( ⟨ 𝑘 , 𝑒 ⟩ ∈ UPGraph ∧ 𝑘 = ∅ ) → ⟨ 𝑘 , 𝑒 ⟩ ∈ UHGraph )
63 37 eqeq1i ( 𝑘 = ∅ ↔ ( Vtx ‘ ⟨ 𝑘 , 𝑒 ⟩ ) = ∅ )
64 uhgr0vb ( ( ⟨ 𝑘 , 𝑒 ⟩ ∈ UPGraph ∧ ( Vtx ‘ ⟨ 𝑘 , 𝑒 ⟩ ) = ∅ ) → ( ⟨ 𝑘 , 𝑒 ⟩ ∈ UHGraph ↔ ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) = ∅ ) )
65 63 64 sylan2b ( ( ⟨ 𝑘 , 𝑒 ⟩ ∈ UPGraph ∧ 𝑘 = ∅ ) → ( ⟨ 𝑘 , 𝑒 ⟩ ∈ UHGraph ↔ ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) = ∅ ) )
66 62 65 mpbid ( ( ⟨ 𝑘 , 𝑒 ⟩ ∈ UPGraph ∧ 𝑘 = ∅ ) → ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) = ∅ )
67 60 66 eqtrid ( ( ⟨ 𝑘 , 𝑒 ⟩ ∈ UPGraph ∧ 𝑘 = ∅ ) → 𝑒 = ∅ )
68 hasheq0 ( 𝑒 ∈ V → ( ( ♯ ‘ 𝑒 ) = 0 ↔ 𝑒 = ∅ ) )
69 68 elv ( ( ♯ ‘ 𝑒 ) = 0 ↔ 𝑒 = ∅ )
70 67 69 sylibr ( ( ⟨ 𝑘 , 𝑒 ⟩ ∈ UPGraph ∧ 𝑘 = ∅ ) → ( ♯ ‘ 𝑒 ) = 0 )
71 70 oveq2d ( ( ⟨ 𝑘 , 𝑒 ⟩ ∈ UPGraph ∧ 𝑘 = ∅ ) → ( 2 · ( ♯ ‘ 𝑒 ) ) = ( 2 · 0 ) )
72 sumeq1 ( 𝑘 = ∅ → Σ 𝑣𝑘 ( ( 𝑘 VtxDeg 𝑒 ) ‘ 𝑣 ) = Σ 𝑣 ∈ ∅ ( ( 𝑘 VtxDeg 𝑒 ) ‘ 𝑣 ) )
73 sum0 Σ 𝑣 ∈ ∅ ( ( 𝑘 VtxDeg 𝑒 ) ‘ 𝑣 ) = 0
74 72 73 eqtrdi ( 𝑘 = ∅ → Σ 𝑣𝑘 ( ( 𝑘 VtxDeg 𝑒 ) ‘ 𝑣 ) = 0 )
75 74 adantl ( ( ⟨ 𝑘 , 𝑒 ⟩ ∈ UPGraph ∧ 𝑘 = ∅ ) → Σ 𝑣𝑘 ( ( 𝑘 VtxDeg 𝑒 ) ‘ 𝑣 ) = 0 )
76 58 71 75 3eqtr4rd ( ( ⟨ 𝑘 , 𝑒 ⟩ ∈ UPGraph ∧ 𝑘 = ∅ ) → Σ 𝑣𝑘 ( ( 𝑘 VtxDeg 𝑒 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑒 ) ) )
77 56 76 sylan2b ( ( ⟨ 𝑘 , 𝑒 ⟩ ∈ UPGraph ∧ ( ♯ ‘ 𝑘 ) = 0 ) → Σ 𝑣𝑘 ( ( 𝑘 VtxDeg 𝑒 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑒 ) ) )
78 77 a1d ( ( ⟨ 𝑘 , 𝑒 ⟩ ∈ UPGraph ∧ ( ♯ ‘ 𝑘 ) = 0 ) → ( 𝑒 ∈ Fin → Σ 𝑣𝑘 ( ( 𝑘 VtxDeg 𝑒 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑒 ) ) ) )
79 eleq1 ( ( 𝑦 + 1 ) = ( ♯ ‘ 𝑘 ) → ( ( 𝑦 + 1 ) ∈ ℕ0 ↔ ( ♯ ‘ 𝑘 ) ∈ ℕ0 ) )
80 79 eqcoms ( ( ♯ ‘ 𝑘 ) = ( 𝑦 + 1 ) → ( ( 𝑦 + 1 ) ∈ ℕ0 ↔ ( ♯ ‘ 𝑘 ) ∈ ℕ0 ) )
81 80 3ad2ant2 ( ( ⟨ 𝑘 , 𝑒 ⟩ ∈ UPGraph ∧ ( ♯ ‘ 𝑘 ) = ( 𝑦 + 1 ) ∧ 𝑛𝑘 ) → ( ( 𝑦 + 1 ) ∈ ℕ0 ↔ ( ♯ ‘ 𝑘 ) ∈ ℕ0 ) )
82 hashclb ( 𝑘 ∈ V → ( 𝑘 ∈ Fin ↔ ( ♯ ‘ 𝑘 ) ∈ ℕ0 ) )
83 82 biimprd ( 𝑘 ∈ V → ( ( ♯ ‘ 𝑘 ) ∈ ℕ0𝑘 ∈ Fin ) )
84 83 elv ( ( ♯ ‘ 𝑘 ) ∈ ℕ0𝑘 ∈ Fin )
85 eqid ( 𝑘 ∖ { 𝑛 } ) = ( 𝑘 ∖ { 𝑛 } )
86 eqid { 𝑖 ∈ dom 𝑒𝑛 ∉ ( 𝑒𝑖 ) } = { 𝑖 ∈ dom 𝑒𝑛 ∉ ( 𝑒𝑖 ) }
87 59 dmeqi dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) = dom 𝑒
88 87 rabeqi { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } = { 𝑖 ∈ dom 𝑒𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) }
89 eqidd ( 𝑖 ∈ dom 𝑒𝑛 = 𝑛 )
90 59 a1i ( 𝑖 ∈ dom 𝑒 → ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) = 𝑒 )
91 90 fveq1d ( 𝑖 ∈ dom 𝑒 → ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) = ( 𝑒𝑖 ) )
92 89 91 neleq12d ( 𝑖 ∈ dom 𝑒 → ( 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) ↔ 𝑛 ∉ ( 𝑒𝑖 ) ) )
93 92 rabbiia { 𝑖 ∈ dom 𝑒𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } = { 𝑖 ∈ dom 𝑒𝑛 ∉ ( 𝑒𝑖 ) }
94 88 93 eqtri { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } = { 𝑖 ∈ dom 𝑒𝑛 ∉ ( 𝑒𝑖 ) }
95 59 94 reseq12i ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) = ( 𝑒 ↾ { 𝑖 ∈ dom 𝑒𝑛 ∉ ( 𝑒𝑖 ) } )
96 37 60 85 86 95 40 finsumvtxdg2sstep ( ( ( ⟨ 𝑘 , 𝑒 ⟩ ∈ UPGraph ∧ 𝑛𝑘 ) ∧ ( 𝑘 ∈ Fin ∧ 𝑒 ∈ Fin ) ) → ( ( ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ∈ Fin → Σ 𝑣 ∈ ( 𝑘 ∖ { 𝑛 } ) ( ( VtxDeg ‘ ⟨ ( 𝑘 ∖ { 𝑛 } ) , ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ⟩ ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ) ) ) → Σ 𝑣𝑘 ( ( VtxDeg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑒 ) ) ) )
97 df-ov ( 𝑘 VtxDeg 𝑒 ) = ( VtxDeg ‘ ⟨ 𝑘 , 𝑒 ⟩ )
98 97 fveq1i ( ( 𝑘 VtxDeg 𝑒 ) ‘ 𝑣 ) = ( ( VtxDeg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑣 )
99 98 a1i ( 𝑣𝑘 → ( ( 𝑘 VtxDeg 𝑒 ) ‘ 𝑣 ) = ( ( VtxDeg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑣 ) )
100 99 sumeq2i Σ 𝑣𝑘 ( ( 𝑘 VtxDeg 𝑒 ) ‘ 𝑣 ) = Σ 𝑣𝑘 ( ( VtxDeg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑣 )
101 100 eqeq1i ( Σ 𝑣𝑘 ( ( 𝑘 VtxDeg 𝑒 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑒 ) ) ↔ Σ 𝑣𝑘 ( ( VtxDeg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑒 ) ) )
102 96 101 imbitrrdi ( ( ( ⟨ 𝑘 , 𝑒 ⟩ ∈ UPGraph ∧ 𝑛𝑘 ) ∧ ( 𝑘 ∈ Fin ∧ 𝑒 ∈ Fin ) ) → ( ( ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ∈ Fin → Σ 𝑣 ∈ ( 𝑘 ∖ { 𝑛 } ) ( ( VtxDeg ‘ ⟨ ( 𝑘 ∖ { 𝑛 } ) , ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ⟩ ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ) ) ) → Σ 𝑣𝑘 ( ( 𝑘 VtxDeg 𝑒 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑒 ) ) ) )
103 102 exp32 ( ( ⟨ 𝑘 , 𝑒 ⟩ ∈ UPGraph ∧ 𝑛𝑘 ) → ( 𝑘 ∈ Fin → ( 𝑒 ∈ Fin → ( ( ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ∈ Fin → Σ 𝑣 ∈ ( 𝑘 ∖ { 𝑛 } ) ( ( VtxDeg ‘ ⟨ ( 𝑘 ∖ { 𝑛 } ) , ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ⟩ ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ) ) ) → Σ 𝑣𝑘 ( ( 𝑘 VtxDeg 𝑒 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑒 ) ) ) ) ) )
104 103 com34 ( ( ⟨ 𝑘 , 𝑒 ⟩ ∈ UPGraph ∧ 𝑛𝑘 ) → ( 𝑘 ∈ Fin → ( ( ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ∈ Fin → Σ 𝑣 ∈ ( 𝑘 ∖ { 𝑛 } ) ( ( VtxDeg ‘ ⟨ ( 𝑘 ∖ { 𝑛 } ) , ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ⟩ ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ) ) ) → ( 𝑒 ∈ Fin → Σ 𝑣𝑘 ( ( 𝑘 VtxDeg 𝑒 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑒 ) ) ) ) ) )
105 104 3adant2 ( ( ⟨ 𝑘 , 𝑒 ⟩ ∈ UPGraph ∧ ( ♯ ‘ 𝑘 ) = ( 𝑦 + 1 ) ∧ 𝑛𝑘 ) → ( 𝑘 ∈ Fin → ( ( ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ∈ Fin → Σ 𝑣 ∈ ( 𝑘 ∖ { 𝑛 } ) ( ( VtxDeg ‘ ⟨ ( 𝑘 ∖ { 𝑛 } ) , ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ⟩ ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ) ) ) → ( 𝑒 ∈ Fin → Σ 𝑣𝑘 ( ( 𝑘 VtxDeg 𝑒 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑒 ) ) ) ) ) )
106 84 105 syl5 ( ( ⟨ 𝑘 , 𝑒 ⟩ ∈ UPGraph ∧ ( ♯ ‘ 𝑘 ) = ( 𝑦 + 1 ) ∧ 𝑛𝑘 ) → ( ( ♯ ‘ 𝑘 ) ∈ ℕ0 → ( ( ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ∈ Fin → Σ 𝑣 ∈ ( 𝑘 ∖ { 𝑛 } ) ( ( VtxDeg ‘ ⟨ ( 𝑘 ∖ { 𝑛 } ) , ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ⟩ ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ) ) ) → ( 𝑒 ∈ Fin → Σ 𝑣𝑘 ( ( 𝑘 VtxDeg 𝑒 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑒 ) ) ) ) ) )
107 81 106 sylbid ( ( ⟨ 𝑘 , 𝑒 ⟩ ∈ UPGraph ∧ ( ♯ ‘ 𝑘 ) = ( 𝑦 + 1 ) ∧ 𝑛𝑘 ) → ( ( 𝑦 + 1 ) ∈ ℕ0 → ( ( ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ∈ Fin → Σ 𝑣 ∈ ( 𝑘 ∖ { 𝑛 } ) ( ( VtxDeg ‘ ⟨ ( 𝑘 ∖ { 𝑛 } ) , ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ⟩ ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ) ) ) → ( 𝑒 ∈ Fin → Σ 𝑣𝑘 ( ( 𝑘 VtxDeg 𝑒 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑒 ) ) ) ) ) )
108 107 impcom ( ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( ⟨ 𝑘 , 𝑒 ⟩ ∈ UPGraph ∧ ( ♯ ‘ 𝑘 ) = ( 𝑦 + 1 ) ∧ 𝑛𝑘 ) ) → ( ( ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ∈ Fin → Σ 𝑣 ∈ ( 𝑘 ∖ { 𝑛 } ) ( ( VtxDeg ‘ ⟨ ( 𝑘 ∖ { 𝑛 } ) , ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ⟩ ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ) ) ) → ( 𝑒 ∈ Fin → Σ 𝑣𝑘 ( ( 𝑘 VtxDeg 𝑒 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑒 ) ) ) ) )
109 108 imp ( ( ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( ⟨ 𝑘 , 𝑒 ⟩ ∈ UPGraph ∧ ( ♯ ‘ 𝑘 ) = ( 𝑦 + 1 ) ∧ 𝑛𝑘 ) ) ∧ ( ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ∈ Fin → Σ 𝑣 ∈ ( 𝑘 ∖ { 𝑛 } ) ( ( VtxDeg ‘ ⟨ ( 𝑘 ∖ { 𝑛 } ) , ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ⟩ ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ↾ { 𝑖 ∈ dom ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ∣ 𝑛 ∉ ( ( iEdg ‘ ⟨ 𝑘 , 𝑒 ⟩ ) ‘ 𝑖 ) } ) ) ) ) ) → ( 𝑒 ∈ Fin → Σ 𝑣𝑘 ( ( 𝑘 VtxDeg 𝑒 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑒 ) ) ) )
110 5 7 19 33 41 54 78 109 opfi1ind ( ( ⟨ ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) ⟩ ∈ UPGraph ∧ ( Vtx ‘ 𝐺 ) ∈ Fin ) → ( ( iEdg ‘ 𝐺 ) ∈ Fin → Σ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( ( ( Vtx ‘ 𝐺 ) VtxDeg ( iEdg ‘ 𝐺 ) ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ ( iEdg ‘ 𝐺 ) ) ) ) )
111 110 ex ( ⟨ ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) ⟩ ∈ UPGraph → ( ( Vtx ‘ 𝐺 ) ∈ Fin → ( ( iEdg ‘ 𝐺 ) ∈ Fin → Σ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( ( ( Vtx ‘ 𝐺 ) VtxDeg ( iEdg ‘ 𝐺 ) ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ ( iEdg ‘ 𝐺 ) ) ) ) ) )
112 4 111 syl ( 𝐺 ∈ UPGraph → ( ( Vtx ‘ 𝐺 ) ∈ Fin → ( ( iEdg ‘ 𝐺 ) ∈ Fin → Σ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( ( ( Vtx ‘ 𝐺 ) VtxDeg ( iEdg ‘ 𝐺 ) ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ ( iEdg ‘ 𝐺 ) ) ) ) ) )
113 1 eleq1i ( 𝑉 ∈ Fin ↔ ( Vtx ‘ 𝐺 ) ∈ Fin )
114 113 a1i ( 𝐺 ∈ UPGraph → ( 𝑉 ∈ Fin ↔ ( Vtx ‘ 𝐺 ) ∈ Fin ) )
115 2 eleq1i ( 𝐼 ∈ Fin ↔ ( iEdg ‘ 𝐺 ) ∈ Fin )
116 115 a1i ( 𝐺 ∈ UPGraph → ( 𝐼 ∈ Fin ↔ ( iEdg ‘ 𝐺 ) ∈ Fin ) )
117 1 a1i ( 𝐺 ∈ UPGraph → 𝑉 = ( Vtx ‘ 𝐺 ) )
118 vtxdgop ( 𝐺 ∈ UPGraph → ( VtxDeg ‘ 𝐺 ) = ( ( Vtx ‘ 𝐺 ) VtxDeg ( iEdg ‘ 𝐺 ) ) )
119 3 118 eqtrid ( 𝐺 ∈ UPGraph → 𝐷 = ( ( Vtx ‘ 𝐺 ) VtxDeg ( iEdg ‘ 𝐺 ) ) )
120 119 fveq1d ( 𝐺 ∈ UPGraph → ( 𝐷𝑣 ) = ( ( ( Vtx ‘ 𝐺 ) VtxDeg ( iEdg ‘ 𝐺 ) ) ‘ 𝑣 ) )
121 120 adantr ( ( 𝐺 ∈ UPGraph ∧ 𝑣𝑉 ) → ( 𝐷𝑣 ) = ( ( ( Vtx ‘ 𝐺 ) VtxDeg ( iEdg ‘ 𝐺 ) ) ‘ 𝑣 ) )
122 117 121 sumeq12dv ( 𝐺 ∈ UPGraph → Σ 𝑣𝑉 ( 𝐷𝑣 ) = Σ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( ( ( Vtx ‘ 𝐺 ) VtxDeg ( iEdg ‘ 𝐺 ) ) ‘ 𝑣 ) )
123 2 fveq2i ( ♯ ‘ 𝐼 ) = ( ♯ ‘ ( iEdg ‘ 𝐺 ) )
124 123 oveq2i ( 2 · ( ♯ ‘ 𝐼 ) ) = ( 2 · ( ♯ ‘ ( iEdg ‘ 𝐺 ) ) )
125 124 a1i ( 𝐺 ∈ UPGraph → ( 2 · ( ♯ ‘ 𝐼 ) ) = ( 2 · ( ♯ ‘ ( iEdg ‘ 𝐺 ) ) ) )
126 122 125 eqeq12d ( 𝐺 ∈ UPGraph → ( Σ 𝑣𝑉 ( 𝐷𝑣 ) = ( 2 · ( ♯ ‘ 𝐼 ) ) ↔ Σ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( ( ( Vtx ‘ 𝐺 ) VtxDeg ( iEdg ‘ 𝐺 ) ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ ( iEdg ‘ 𝐺 ) ) ) ) )
127 116 126 imbi12d ( 𝐺 ∈ UPGraph → ( ( 𝐼 ∈ Fin → Σ 𝑣𝑉 ( 𝐷𝑣 ) = ( 2 · ( ♯ ‘ 𝐼 ) ) ) ↔ ( ( iEdg ‘ 𝐺 ) ∈ Fin → Σ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( ( ( Vtx ‘ 𝐺 ) VtxDeg ( iEdg ‘ 𝐺 ) ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ ( iEdg ‘ 𝐺 ) ) ) ) ) )
128 112 114 127 3imtr4d ( 𝐺 ∈ UPGraph → ( 𝑉 ∈ Fin → ( 𝐼 ∈ Fin → Σ 𝑣𝑉 ( 𝐷𝑣 ) = ( 2 · ( ♯ ‘ 𝐼 ) ) ) ) )
129 128 3imp ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → Σ 𝑣𝑉 ( 𝐷𝑣 ) = ( 2 · ( ♯ ‘ 𝐼 ) ) )