This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for negated membership. (Contributed by FL, 10-Aug-2016) (Proof shortened by Wolf Lammen, 25-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | neleq12d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| neleq12d.2 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | ||
| Assertion | neleq12d | ⊢ ( 𝜑 → ( 𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neleq12d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 2 | neleq12d.2 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | |
| 3 | 1 2 | eleq12d | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷 ) ) |
| 4 | 3 | notbid | ⊢ ( 𝜑 → ( ¬ 𝐴 ∈ 𝐶 ↔ ¬ 𝐵 ∈ 𝐷 ) ) |
| 5 | df-nel | ⊢ ( 𝐴 ∉ 𝐶 ↔ ¬ 𝐴 ∈ 𝐶 ) | |
| 6 | df-nel | ⊢ ( 𝐵 ∉ 𝐷 ↔ ¬ 𝐵 ∈ 𝐷 ) | |
| 7 | 4 5 6 | 3bitr4g | ⊢ ( 𝜑 → ( 𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐷 ) ) |