This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vertex degree expressed as operation. (Contributed by AV, 12-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | vtxdgop | ⊢ ( 𝐺 ∈ 𝑊 → ( VtxDeg ‘ 𝐺 ) = ( ( Vtx ‘ 𝐺 ) VtxDeg ( iEdg ‘ 𝐺 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex | ⊢ 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ∈ V | |
| 2 | fvex | ⊢ ( Vtx ‘ 𝐺 ) ∈ V | |
| 3 | fvex | ⊢ ( iEdg ‘ 𝐺 ) ∈ V | |
| 4 | 2 3 | opvtxfvi | ⊢ ( Vtx ‘ 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ) = ( Vtx ‘ 𝐺 ) |
| 5 | 4 | eqcomi | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ) |
| 6 | 2 3 | opiedgfvi | ⊢ ( iEdg ‘ 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ) = ( iEdg ‘ 𝐺 ) |
| 7 | 6 | eqcomi | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ) |
| 8 | eqid | ⊢ dom ( iEdg ‘ 𝐺 ) = dom ( iEdg ‘ 𝐺 ) | |
| 9 | 5 7 8 | vtxdgfval | ⊢ ( 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ∈ V → ( VtxDeg ‘ 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ) = ( 𝑢 ∈ ( Vtx ‘ 𝐺 ) ↦ ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑢 } } ) ) ) ) |
| 10 | 1 9 | mp1i | ⊢ ( 𝐺 ∈ 𝑊 → ( VtxDeg ‘ 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ) = ( 𝑢 ∈ ( Vtx ‘ 𝐺 ) ↦ ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑢 } } ) ) ) ) |
| 11 | df-ov | ⊢ ( ( Vtx ‘ 𝐺 ) VtxDeg ( iEdg ‘ 𝐺 ) ) = ( VtxDeg ‘ 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ) | |
| 12 | 11 | a1i | ⊢ ( 𝐺 ∈ 𝑊 → ( ( Vtx ‘ 𝐺 ) VtxDeg ( iEdg ‘ 𝐺 ) ) = ( VtxDeg ‘ 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ) ) |
| 13 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 14 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 15 | 13 14 8 | vtxdgfval | ⊢ ( 𝐺 ∈ 𝑊 → ( VtxDeg ‘ 𝐺 ) = ( 𝑢 ∈ ( Vtx ‘ 𝐺 ) ↦ ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑢 } } ) ) ) ) |
| 16 | 10 12 15 | 3eqtr4rd | ⊢ ( 𝐺 ∈ 𝑊 → ( VtxDeg ‘ 𝐺 ) = ( ( Vtx ‘ 𝐺 ) VtxDeg ( iEdg ‘ 𝐺 ) ) ) |