This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subgraph obtained by removing one vertex and all edges incident with this vertex from a pseudograph (see uhgrspan1 ) is a pseudograph. (Contributed by AV, 8-Nov-2020) (Revised by AV, 19-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrres.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| upgrres.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | ||
| upgrres.f | ⊢ 𝐹 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ ( 𝐸 ‘ 𝑖 ) } | ||
| upgrres.s | ⊢ 𝑆 = 〈 ( 𝑉 ∖ { 𝑁 } ) , ( 𝐸 ↾ 𝐹 ) 〉 | ||
| Assertion | upgrres | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → 𝑆 ∈ UPGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrres.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | upgrres.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 3 | upgrres.f | ⊢ 𝐹 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ ( 𝐸 ‘ 𝑖 ) } | |
| 4 | upgrres.s | ⊢ 𝑆 = 〈 ( 𝑉 ∖ { 𝑁 } ) , ( 𝐸 ↾ 𝐹 ) 〉 | |
| 5 | upgruhgr | ⊢ ( 𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph ) | |
| 6 | 2 | uhgrfun | ⊢ ( 𝐺 ∈ UHGraph → Fun 𝐸 ) |
| 7 | funres | ⊢ ( Fun 𝐸 → Fun ( 𝐸 ↾ 𝐹 ) ) | |
| 8 | 5 6 7 | 3syl | ⊢ ( 𝐺 ∈ UPGraph → Fun ( 𝐸 ↾ 𝐹 ) ) |
| 9 | 8 | funfnd | ⊢ ( 𝐺 ∈ UPGraph → ( 𝐸 ↾ 𝐹 ) Fn dom ( 𝐸 ↾ 𝐹 ) ) |
| 10 | 9 | adantr | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐸 ↾ 𝐹 ) Fn dom ( 𝐸 ↾ 𝐹 ) ) |
| 11 | 1 2 3 | upgrreslem | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ran ( 𝐸 ↾ 𝐹 ) ⊆ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) |
| 12 | df-f | ⊢ ( ( 𝐸 ↾ 𝐹 ) : dom ( 𝐸 ↾ 𝐹 ) ⟶ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ↔ ( ( 𝐸 ↾ 𝐹 ) Fn dom ( 𝐸 ↾ 𝐹 ) ∧ ran ( 𝐸 ↾ 𝐹 ) ⊆ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) | |
| 13 | 10 11 12 | sylanbrc | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐸 ↾ 𝐹 ) : dom ( 𝐸 ↾ 𝐹 ) ⟶ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) |
| 14 | opex | ⊢ 〈 ( 𝑉 ∖ { 𝑁 } ) , ( 𝐸 ↾ 𝐹 ) 〉 ∈ V | |
| 15 | 4 14 | eqeltri | ⊢ 𝑆 ∈ V |
| 16 | 1 2 3 4 | uhgrspan1lem2 | ⊢ ( Vtx ‘ 𝑆 ) = ( 𝑉 ∖ { 𝑁 } ) |
| 17 | 16 | eqcomi | ⊢ ( 𝑉 ∖ { 𝑁 } ) = ( Vtx ‘ 𝑆 ) |
| 18 | 1 2 3 4 | uhgrspan1lem3 | ⊢ ( iEdg ‘ 𝑆 ) = ( 𝐸 ↾ 𝐹 ) |
| 19 | 18 | eqcomi | ⊢ ( 𝐸 ↾ 𝐹 ) = ( iEdg ‘ 𝑆 ) |
| 20 | 17 19 | isupgr | ⊢ ( 𝑆 ∈ V → ( 𝑆 ∈ UPGraph ↔ ( 𝐸 ↾ 𝐹 ) : dom ( 𝐸 ↾ 𝐹 ) ⟶ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) |
| 21 | 15 20 | mp1i | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑆 ∈ UPGraph ↔ ( 𝐸 ↾ 𝐹 ) : dom ( 𝐸 ↾ 𝐹 ) ⟶ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) |
| 22 | 13 21 | mpbird | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → 𝑆 ∈ UPGraph ) |