This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The null graph, with no vertices, is a hypergraph if and only if the edge function is empty. (Contributed by Alexander van der Vekens, 27-Dec-2017) (Revised by AV, 9-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uhgr0vb | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) → ( 𝐺 ∈ UHGraph ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 3 | 1 2 | uhgrf | ⊢ ( 𝐺 ∈ UHGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) |
| 4 | pweq | ⊢ ( ( Vtx ‘ 𝐺 ) = ∅ → 𝒫 ( Vtx ‘ 𝐺 ) = 𝒫 ∅ ) | |
| 5 | 4 | difeq1d | ⊢ ( ( Vtx ‘ 𝐺 ) = ∅ → ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) = ( 𝒫 ∅ ∖ { ∅ } ) ) |
| 6 | pw0 | ⊢ 𝒫 ∅ = { ∅ } | |
| 7 | 6 | difeq1i | ⊢ ( 𝒫 ∅ ∖ { ∅ } ) = ( { ∅ } ∖ { ∅ } ) |
| 8 | difid | ⊢ ( { ∅ } ∖ { ∅ } ) = ∅ | |
| 9 | 7 8 | eqtri | ⊢ ( 𝒫 ∅ ∖ { ∅ } ) = ∅ |
| 10 | 5 9 | eqtrdi | ⊢ ( ( Vtx ‘ 𝐺 ) = ∅ → ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) = ∅ ) |
| 11 | 10 | adantl | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) → ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) = ∅ ) |
| 12 | 11 | feq3d | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) → ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ∅ ) ) |
| 13 | f00 | ⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ∅ ↔ ( ( iEdg ‘ 𝐺 ) = ∅ ∧ dom ( iEdg ‘ 𝐺 ) = ∅ ) ) | |
| 14 | 13 | simplbi | ⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ∅ → ( iEdg ‘ 𝐺 ) = ∅ ) |
| 15 | 12 14 | biimtrdi | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) → ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) → ( iEdg ‘ 𝐺 ) = ∅ ) ) |
| 16 | 3 15 | syl5 | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) → ( 𝐺 ∈ UHGraph → ( iEdg ‘ 𝐺 ) = ∅ ) ) |
| 17 | simpl | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( iEdg ‘ 𝐺 ) = ∅ ) → 𝐺 ∈ 𝑊 ) | |
| 18 | simpr | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( iEdg ‘ 𝐺 ) = ∅ ) → ( iEdg ‘ 𝐺 ) = ∅ ) | |
| 19 | 17 18 | uhgr0e | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( iEdg ‘ 𝐺 ) = ∅ ) → 𝐺 ∈ UHGraph ) |
| 20 | 19 | ex | ⊢ ( 𝐺 ∈ 𝑊 → ( ( iEdg ‘ 𝐺 ) = ∅ → 𝐺 ∈ UHGraph ) ) |
| 21 | 20 | adantr | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) → ( ( iEdg ‘ 𝐺 ) = ∅ → 𝐺 ∈ UHGraph ) ) |
| 22 | 16 21 | impbid | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) → ( 𝐺 ∈ UHGraph ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) |