This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak theorem which skips Ia but has a trivial proof, needed to prove fin1a2 . (Contributed by Stefan O'Rear, 8-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fin12 | ⊢ ( 𝐴 ∈ Fin → 𝐴 ∈ FinII ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑏 ∈ V | |
| 2 | 1 | a1i | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴 ) ∧ ( 𝑏 ≠ ∅ ∧ [⊊] Or 𝑏 ) ) → 𝑏 ∈ V ) |
| 3 | isfin1-3 | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 ∈ Fin ↔ ◡ [⊊] Fr 𝒫 𝐴 ) ) | |
| 4 | 3 | ibi | ⊢ ( 𝐴 ∈ Fin → ◡ [⊊] Fr 𝒫 𝐴 ) |
| 5 | 4 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴 ) ∧ ( 𝑏 ≠ ∅ ∧ [⊊] Or 𝑏 ) ) → ◡ [⊊] Fr 𝒫 𝐴 ) |
| 6 | elpwi | ⊢ ( 𝑏 ∈ 𝒫 𝒫 𝐴 → 𝑏 ⊆ 𝒫 𝐴 ) | |
| 7 | 6 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴 ) ∧ ( 𝑏 ≠ ∅ ∧ [⊊] Or 𝑏 ) ) → 𝑏 ⊆ 𝒫 𝐴 ) |
| 8 | simprl | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴 ) ∧ ( 𝑏 ≠ ∅ ∧ [⊊] Or 𝑏 ) ) → 𝑏 ≠ ∅ ) | |
| 9 | fri | ⊢ ( ( ( 𝑏 ∈ V ∧ ◡ [⊊] Fr 𝒫 𝐴 ) ∧ ( 𝑏 ⊆ 𝒫 𝐴 ∧ 𝑏 ≠ ∅ ) ) → ∃ 𝑐 ∈ 𝑏 ∀ 𝑑 ∈ 𝑏 ¬ 𝑑 ◡ [⊊] 𝑐 ) | |
| 10 | 2 5 7 8 9 | syl22anc | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴 ) ∧ ( 𝑏 ≠ ∅ ∧ [⊊] Or 𝑏 ) ) → ∃ 𝑐 ∈ 𝑏 ∀ 𝑑 ∈ 𝑏 ¬ 𝑑 ◡ [⊊] 𝑐 ) |
| 11 | vex | ⊢ 𝑑 ∈ V | |
| 12 | vex | ⊢ 𝑐 ∈ V | |
| 13 | 11 12 | brcnv | ⊢ ( 𝑑 ◡ [⊊] 𝑐 ↔ 𝑐 [⊊] 𝑑 ) |
| 14 | 11 | brrpss | ⊢ ( 𝑐 [⊊] 𝑑 ↔ 𝑐 ⊊ 𝑑 ) |
| 15 | 13 14 | bitri | ⊢ ( 𝑑 ◡ [⊊] 𝑐 ↔ 𝑐 ⊊ 𝑑 ) |
| 16 | 15 | notbii | ⊢ ( ¬ 𝑑 ◡ [⊊] 𝑐 ↔ ¬ 𝑐 ⊊ 𝑑 ) |
| 17 | 16 | ralbii | ⊢ ( ∀ 𝑑 ∈ 𝑏 ¬ 𝑑 ◡ [⊊] 𝑐 ↔ ∀ 𝑑 ∈ 𝑏 ¬ 𝑐 ⊊ 𝑑 ) |
| 18 | 17 | rexbii | ⊢ ( ∃ 𝑐 ∈ 𝑏 ∀ 𝑑 ∈ 𝑏 ¬ 𝑑 ◡ [⊊] 𝑐 ↔ ∃ 𝑐 ∈ 𝑏 ∀ 𝑑 ∈ 𝑏 ¬ 𝑐 ⊊ 𝑑 ) |
| 19 | 10 18 | sylib | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴 ) ∧ ( 𝑏 ≠ ∅ ∧ [⊊] Or 𝑏 ) ) → ∃ 𝑐 ∈ 𝑏 ∀ 𝑑 ∈ 𝑏 ¬ 𝑐 ⊊ 𝑑 ) |
| 20 | sorpssuni | ⊢ ( [⊊] Or 𝑏 → ( ∃ 𝑐 ∈ 𝑏 ∀ 𝑑 ∈ 𝑏 ¬ 𝑐 ⊊ 𝑑 ↔ ∪ 𝑏 ∈ 𝑏 ) ) | |
| 21 | 20 | ad2antll | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴 ) ∧ ( 𝑏 ≠ ∅ ∧ [⊊] Or 𝑏 ) ) → ( ∃ 𝑐 ∈ 𝑏 ∀ 𝑑 ∈ 𝑏 ¬ 𝑐 ⊊ 𝑑 ↔ ∪ 𝑏 ∈ 𝑏 ) ) |
| 22 | 19 21 | mpbid | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴 ) ∧ ( 𝑏 ≠ ∅ ∧ [⊊] Or 𝑏 ) ) → ∪ 𝑏 ∈ 𝑏 ) |
| 23 | 22 | ex | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴 ) → ( ( 𝑏 ≠ ∅ ∧ [⊊] Or 𝑏 ) → ∪ 𝑏 ∈ 𝑏 ) ) |
| 24 | 23 | ralrimiva | ⊢ ( 𝐴 ∈ Fin → ∀ 𝑏 ∈ 𝒫 𝒫 𝐴 ( ( 𝑏 ≠ ∅ ∧ [⊊] Or 𝑏 ) → ∪ 𝑏 ∈ 𝑏 ) ) |
| 25 | isfin2 | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 ∈ FinII ↔ ∀ 𝑏 ∈ 𝒫 𝒫 𝐴 ( ( 𝑏 ≠ ∅ ∧ [⊊] Or 𝑏 ) → ∪ 𝑏 ∈ 𝑏 ) ) ) | |
| 26 | 24 25 | mpbird | ⊢ ( 𝐴 ∈ Fin → 𝐴 ∈ FinII ) |