This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Right-multiplication in a ring by a fixed element of the ring is a group homomorphism. (It is not usually a ring homomorphism.) (Contributed by Mario Carneiro, 4-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringlghm.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| ringlghm.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | ringrghm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) ∈ ( 𝑅 GrpHom 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringlghm.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | ringlghm.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 4 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → 𝑅 ∈ Grp ) |
| 6 | 1 2 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑥 · 𝑋 ) ∈ 𝐵 ) |
| 7 | 6 | 3expa | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝑥 · 𝑋 ) ∈ 𝐵 ) |
| 8 | 7 | an32s | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 · 𝑋 ) ∈ 𝐵 ) |
| 9 | 8 | fmpttd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) : 𝐵 ⟶ 𝐵 ) |
| 10 | df-3an | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ↔ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑋 ∈ 𝐵 ) ) | |
| 11 | 1 3 2 | ringdir | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) · 𝑋 ) = ( ( 𝑦 · 𝑋 ) ( +g ‘ 𝑅 ) ( 𝑧 · 𝑋 ) ) ) |
| 12 | 10 11 | sylan2br | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) · 𝑋 ) = ( ( 𝑦 · 𝑋 ) ( +g ‘ 𝑅 ) ( 𝑧 · 𝑋 ) ) ) |
| 13 | 12 | anass1rs | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) · 𝑋 ) = ( ( 𝑦 · 𝑋 ) ( +g ‘ 𝑅 ) ( 𝑧 · 𝑋 ) ) ) |
| 14 | 1 3 | ringacl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐵 ) |
| 15 | 14 | 3expb | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐵 ) |
| 16 | 15 | adantlr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐵 ) |
| 17 | oveq1 | ⊢ ( 𝑥 = ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) → ( 𝑥 · 𝑋 ) = ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) · 𝑋 ) ) | |
| 18 | eqid | ⊢ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) | |
| 19 | ovex | ⊢ ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) · 𝑋 ) ∈ V | |
| 20 | 17 18 19 | fvmpt | ⊢ ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) ‘ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) · 𝑋 ) ) |
| 21 | 16 20 | syl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) ‘ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) · 𝑋 ) ) |
| 22 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 · 𝑋 ) = ( 𝑦 · 𝑋 ) ) | |
| 23 | ovex | ⊢ ( 𝑦 · 𝑋 ) ∈ V | |
| 24 | 22 18 23 | fvmpt | ⊢ ( 𝑦 ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) ‘ 𝑦 ) = ( 𝑦 · 𝑋 ) ) |
| 25 | oveq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 · 𝑋 ) = ( 𝑧 · 𝑋 ) ) | |
| 26 | ovex | ⊢ ( 𝑧 · 𝑋 ) ∈ V | |
| 27 | 25 18 26 | fvmpt | ⊢ ( 𝑧 ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) ‘ 𝑧 ) = ( 𝑧 · 𝑋 ) ) |
| 28 | 24 27 | oveqan12d | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) ‘ 𝑦 ) ( +g ‘ 𝑅 ) ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) ‘ 𝑧 ) ) = ( ( 𝑦 · 𝑋 ) ( +g ‘ 𝑅 ) ( 𝑧 · 𝑋 ) ) ) |
| 29 | 28 | adantl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) ‘ 𝑦 ) ( +g ‘ 𝑅 ) ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) ‘ 𝑧 ) ) = ( ( 𝑦 · 𝑋 ) ( +g ‘ 𝑅 ) ( 𝑧 · 𝑋 ) ) ) |
| 30 | 13 21 29 | 3eqtr4d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) ‘ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) ‘ 𝑦 ) ( +g ‘ 𝑅 ) ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) ‘ 𝑧 ) ) ) |
| 31 | 1 1 3 3 5 5 9 30 | isghmd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) ∈ ( 𝑅 GrpHom 𝑅 ) ) |