This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying a group homomorphism is 1-1 into its codomain. (Contributed by Paul Chapman, 3-Mar-2008) (Revised by Mario Carneiro, 13-Jan-2015) (Proof shortened by AV, 4-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | f1ghm0to0.a | ⊢ 𝐴 = ( Base ‘ 𝑅 ) | |
| f1ghm0to0.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| f1ghm0to0.n | ⊢ 𝑁 = ( 0g ‘ 𝑅 ) | ||
| f1ghm0to0.0 | ⊢ 0 = ( 0g ‘ 𝑆 ) | ||
| Assertion | ghmf1 | ⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ghm0to0.a | ⊢ 𝐴 = ( Base ‘ 𝑅 ) | |
| 2 | f1ghm0to0.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 3 | f1ghm0to0.n | ⊢ 𝑁 = ( 0g ‘ 𝑅 ) | |
| 4 | f1ghm0to0.0 | ⊢ 0 = ( 0g ‘ 𝑆 ) | |
| 5 | 1 2 3 4 | f1ghm0to0 | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 𝑁 ) ) |
| 6 | 5 | 3expa | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 𝑁 ) ) |
| 7 | 6 | biimpd | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) |
| 8 | 7 | ralrimiva | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) |
| 9 | 1 2 | ghmf | ⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 10 | 9 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 11 | eqid | ⊢ ( -g ‘ 𝑅 ) = ( -g ‘ 𝑅 ) | |
| 12 | eqid | ⊢ ( -g ‘ 𝑆 ) = ( -g ‘ 𝑆 ) | |
| 13 | 1 11 12 | ghmsub | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) ( -g ‘ 𝑆 ) ( 𝐹 ‘ 𝑧 ) ) ) |
| 14 | 13 | 3expb | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝐹 ‘ ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) ( -g ‘ 𝑆 ) ( 𝐹 ‘ 𝑧 ) ) ) |
| 15 | 14 | adantlr | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝐹 ‘ ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) ( -g ‘ 𝑆 ) ( 𝐹 ‘ 𝑧 ) ) ) |
| 16 | 15 | eqeq1d | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) ) = 0 ↔ ( ( 𝐹 ‘ 𝑦 ) ( -g ‘ 𝑆 ) ( 𝐹 ‘ 𝑧 ) ) = 0 ) ) |
| 17 | fveqeq2 | ⊢ ( 𝑥 = ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) → ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ ( 𝐹 ‘ ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) ) = 0 ) ) | |
| 18 | eqeq1 | ⊢ ( 𝑥 = ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) → ( 𝑥 = 𝑁 ↔ ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) = 𝑁 ) ) | |
| 19 | 17 18 | imbi12d | ⊢ ( 𝑥 = ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) → ( ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ↔ ( ( 𝐹 ‘ ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) ) = 0 → ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) = 𝑁 ) ) ) |
| 20 | simplr | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) | |
| 21 | ghmgrp1 | ⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → 𝑅 ∈ Grp ) | |
| 22 | 21 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) → 𝑅 ∈ Grp ) |
| 23 | 1 11 | grpsubcl | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) ∈ 𝐴 ) |
| 24 | 23 | 3expb | ⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) ∈ 𝐴 ) |
| 25 | 22 24 | sylan | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) ∈ 𝐴 ) |
| 26 | 19 20 25 | rspcdva | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) ) = 0 → ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) = 𝑁 ) ) |
| 27 | 16 26 | sylbird | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( 𝐹 ‘ 𝑦 ) ( -g ‘ 𝑆 ) ( 𝐹 ‘ 𝑧 ) ) = 0 → ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) = 𝑁 ) ) |
| 28 | ghmgrp2 | ⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → 𝑆 ∈ Grp ) | |
| 29 | 28 | ad2antrr | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → 𝑆 ∈ Grp ) |
| 30 | 9 | ad2antrr | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 31 | simprl | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → 𝑦 ∈ 𝐴 ) | |
| 32 | 30 31 | ffvelcdmd | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) |
| 33 | simprr | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → 𝑧 ∈ 𝐴 ) | |
| 34 | 30 33 | ffvelcdmd | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ) |
| 35 | 2 4 12 | grpsubeq0 | ⊢ ( ( 𝑆 ∈ Grp ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ) → ( ( ( 𝐹 ‘ 𝑦 ) ( -g ‘ 𝑆 ) ( 𝐹 ‘ 𝑧 ) ) = 0 ↔ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ) ) |
| 36 | 29 32 34 35 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( 𝐹 ‘ 𝑦 ) ( -g ‘ 𝑆 ) ( 𝐹 ‘ 𝑧 ) ) = 0 ↔ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ) ) |
| 37 | 21 | ad2antrr | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → 𝑅 ∈ Grp ) |
| 38 | 1 3 11 | grpsubeq0 | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) = 𝑁 ↔ 𝑦 = 𝑧 ) ) |
| 39 | 37 31 33 38 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) = 𝑁 ↔ 𝑦 = 𝑧 ) ) |
| 40 | 27 36 39 | 3imtr3d | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 41 | 40 | ralrimivva | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) → ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 42 | dff13 | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) | |
| 43 | 10 41 42 | sylanbrc | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) → 𝐹 : 𝐴 –1-1→ 𝐵 ) |
| 44 | 8 43 | impbida | ⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) ) |