This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equinumerosity is reflexive for finite sets, proved without using the Axiom of Power Sets (unlike enrefg ). (Contributed by BTernaryTau, 8-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | enreffi | ⊢ ( 𝐴 ∈ Fin → 𝐴 ≈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oi | ⊢ ( I ↾ 𝐴 ) : 𝐴 –1-1-onto→ 𝐴 | |
| 2 | f1oenfi | ⊢ ( ( 𝐴 ∈ Fin ∧ ( I ↾ 𝐴 ) : 𝐴 –1-1-onto→ 𝐴 ) → 𝐴 ≈ 𝐴 ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝐴 ∈ Fin → 𝐴 ≈ 𝐴 ) |