This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Fermat's little theorem. When P is prime, A ^ P == A (mod P ) for any A , see theorem 5.19 in ApostolNT p. 114. (Contributed by Mario Carneiro, 28-Feb-2014) (Proof shortened by AV, 19-Mar-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fermltl | |- ( ( P e. Prime /\ A e. ZZ ) -> ( ( A ^ P ) mod P ) = ( A mod P ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 2 | dvdsmodexp | |- ( ( P e. NN /\ P e. NN /\ P || A ) -> ( ( A ^ P ) mod P ) = ( A mod P ) ) |
|
| 3 | 2 | 3exp | |- ( P e. NN -> ( P e. NN -> ( P || A -> ( ( A ^ P ) mod P ) = ( A mod P ) ) ) ) |
| 4 | 1 1 3 | sylc | |- ( P e. Prime -> ( P || A -> ( ( A ^ P ) mod P ) = ( A mod P ) ) ) |
| 5 | 4 | adantr | |- ( ( P e. Prime /\ A e. ZZ ) -> ( P || A -> ( ( A ^ P ) mod P ) = ( A mod P ) ) ) |
| 6 | coprm | |- ( ( P e. Prime /\ A e. ZZ ) -> ( -. P || A <-> ( P gcd A ) = 1 ) ) |
|
| 7 | prmz | |- ( P e. Prime -> P e. ZZ ) |
|
| 8 | gcdcom | |- ( ( P e. ZZ /\ A e. ZZ ) -> ( P gcd A ) = ( A gcd P ) ) |
|
| 9 | 7 8 | sylan | |- ( ( P e. Prime /\ A e. ZZ ) -> ( P gcd A ) = ( A gcd P ) ) |
| 10 | 9 | eqeq1d | |- ( ( P e. Prime /\ A e. ZZ ) -> ( ( P gcd A ) = 1 <-> ( A gcd P ) = 1 ) ) |
| 11 | 6 10 | bitrd | |- ( ( P e. Prime /\ A e. ZZ ) -> ( -. P || A <-> ( A gcd P ) = 1 ) ) |
| 12 | simp2 | |- ( ( P e. Prime /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> A e. ZZ ) |
|
| 13 | 1 | 3ad2ant1 | |- ( ( P e. Prime /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> P e. NN ) |
| 14 | 13 | phicld | |- ( ( P e. Prime /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> ( phi ` P ) e. NN ) |
| 15 | 14 | nnnn0d | |- ( ( P e. Prime /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> ( phi ` P ) e. NN0 ) |
| 16 | zexpcl | |- ( ( A e. ZZ /\ ( phi ` P ) e. NN0 ) -> ( A ^ ( phi ` P ) ) e. ZZ ) |
|
| 17 | 12 15 16 | syl2anc | |- ( ( P e. Prime /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> ( A ^ ( phi ` P ) ) e. ZZ ) |
| 18 | 17 | zred | |- ( ( P e. Prime /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> ( A ^ ( phi ` P ) ) e. RR ) |
| 19 | 1red | |- ( ( P e. Prime /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> 1 e. RR ) |
|
| 20 | 13 | nnrpd | |- ( ( P e. Prime /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> P e. RR+ ) |
| 21 | eulerth | |- ( ( P e. NN /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> ( ( A ^ ( phi ` P ) ) mod P ) = ( 1 mod P ) ) |
|
| 22 | 1 21 | syl3an1 | |- ( ( P e. Prime /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> ( ( A ^ ( phi ` P ) ) mod P ) = ( 1 mod P ) ) |
| 23 | modmul1 | |- ( ( ( ( A ^ ( phi ` P ) ) e. RR /\ 1 e. RR ) /\ ( A e. ZZ /\ P e. RR+ ) /\ ( ( A ^ ( phi ` P ) ) mod P ) = ( 1 mod P ) ) -> ( ( ( A ^ ( phi ` P ) ) x. A ) mod P ) = ( ( 1 x. A ) mod P ) ) |
|
| 24 | 18 19 12 20 22 23 | syl221anc | |- ( ( P e. Prime /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> ( ( ( A ^ ( phi ` P ) ) x. A ) mod P ) = ( ( 1 x. A ) mod P ) ) |
| 25 | phiprm | |- ( P e. Prime -> ( phi ` P ) = ( P - 1 ) ) |
|
| 26 | 25 | 3ad2ant1 | |- ( ( P e. Prime /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> ( phi ` P ) = ( P - 1 ) ) |
| 27 | 26 | oveq2d | |- ( ( P e. Prime /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> ( A ^ ( phi ` P ) ) = ( A ^ ( P - 1 ) ) ) |
| 28 | 27 | oveq1d | |- ( ( P e. Prime /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> ( ( A ^ ( phi ` P ) ) x. A ) = ( ( A ^ ( P - 1 ) ) x. A ) ) |
| 29 | 12 | zcnd | |- ( ( P e. Prime /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> A e. CC ) |
| 30 | expm1t | |- ( ( A e. CC /\ P e. NN ) -> ( A ^ P ) = ( ( A ^ ( P - 1 ) ) x. A ) ) |
|
| 31 | 29 13 30 | syl2anc | |- ( ( P e. Prime /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> ( A ^ P ) = ( ( A ^ ( P - 1 ) ) x. A ) ) |
| 32 | 28 31 | eqtr4d | |- ( ( P e. Prime /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> ( ( A ^ ( phi ` P ) ) x. A ) = ( A ^ P ) ) |
| 33 | 32 | oveq1d | |- ( ( P e. Prime /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> ( ( ( A ^ ( phi ` P ) ) x. A ) mod P ) = ( ( A ^ P ) mod P ) ) |
| 34 | 29 | mullidd | |- ( ( P e. Prime /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> ( 1 x. A ) = A ) |
| 35 | 34 | oveq1d | |- ( ( P e. Prime /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> ( ( 1 x. A ) mod P ) = ( A mod P ) ) |
| 36 | 24 33 35 | 3eqtr3d | |- ( ( P e. Prime /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> ( ( A ^ P ) mod P ) = ( A mod P ) ) |
| 37 | 36 | 3expia | |- ( ( P e. Prime /\ A e. ZZ ) -> ( ( A gcd P ) = 1 -> ( ( A ^ P ) mod P ) = ( A mod P ) ) ) |
| 38 | 11 37 | sylbid | |- ( ( P e. Prime /\ A e. ZZ ) -> ( -. P || A -> ( ( A ^ P ) mod P ) = ( A mod P ) ) ) |
| 39 | 5 38 | pm2.61d | |- ( ( P e. Prime /\ A e. ZZ ) -> ( ( A ^ P ) mod P ) = ( A mod P ) ) |