This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a positive integer divides another integer, this other integer is equal to its positive powers modulo the positive integer. (Formerly part of the proof for fermltl ). (Contributed by Mario Carneiro, 28-Feb-2014) (Revised by AV, 19-Mar-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsmodexp | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∥ 𝐴 ) → ( ( 𝐴 ↑ 𝐵 ) mod 𝑁 ) = ( 𝐴 mod 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdszrcl | ⊢ ( 𝑁 ∥ 𝐴 → ( 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ) | |
| 2 | dvdsmod0 | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝐴 ) → ( 𝐴 mod 𝑁 ) = 0 ) | |
| 3 | 2 | 3ad2antl2 | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 𝑁 ∥ 𝐴 ) → ( 𝐴 mod 𝑁 ) = 0 ) |
| 4 | 3 | ex | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝑁 ∥ 𝐴 → ( 𝐴 mod 𝑁 ) = 0 ) ) |
| 5 | simpl3 | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( 𝐴 mod 𝑁 ) = 0 ) → 𝐵 ∈ ℕ ) | |
| 6 | 5 | 0expd | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( 𝐴 mod 𝑁 ) = 0 ) → ( 0 ↑ 𝐵 ) = 0 ) |
| 7 | 6 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( 𝐴 mod 𝑁 ) = 0 ) → ( ( 0 ↑ 𝐵 ) mod 𝑁 ) = ( 0 mod 𝑁 ) ) |
| 8 | simpl1 | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( 𝐴 mod 𝑁 ) = 0 ) → 𝐴 ∈ ℤ ) | |
| 9 | 0zd | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( 𝐴 mod 𝑁 ) = 0 ) → 0 ∈ ℤ ) | |
| 10 | nnnn0 | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℕ0 ) | |
| 11 | 10 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℕ0 ) |
| 12 | 11 | adantr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( 𝐴 mod 𝑁 ) = 0 ) → 𝐵 ∈ ℕ0 ) |
| 13 | nnrp | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ+ ) | |
| 14 | 13 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 𝑁 ∈ ℝ+ ) |
| 15 | 14 | adantr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( 𝐴 mod 𝑁 ) = 0 ) → 𝑁 ∈ ℝ+ ) |
| 16 | simpr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( 𝐴 mod 𝑁 ) = 0 ) → ( 𝐴 mod 𝑁 ) = 0 ) | |
| 17 | 0mod | ⊢ ( 𝑁 ∈ ℝ+ → ( 0 mod 𝑁 ) = 0 ) | |
| 18 | 15 17 | syl | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( 𝐴 mod 𝑁 ) = 0 ) → ( 0 mod 𝑁 ) = 0 ) |
| 19 | 16 18 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( 𝐴 mod 𝑁 ) = 0 ) → ( 𝐴 mod 𝑁 ) = ( 0 mod 𝑁 ) ) |
| 20 | modexp | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 0 ∈ ℤ ) ∧ ( 𝐵 ∈ ℕ0 ∧ 𝑁 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑁 ) = ( 0 mod 𝑁 ) ) → ( ( 𝐴 ↑ 𝐵 ) mod 𝑁 ) = ( ( 0 ↑ 𝐵 ) mod 𝑁 ) ) | |
| 21 | 8 9 12 15 19 20 | syl221anc | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( 𝐴 mod 𝑁 ) = 0 ) → ( ( 𝐴 ↑ 𝐵 ) mod 𝑁 ) = ( ( 0 ↑ 𝐵 ) mod 𝑁 ) ) |
| 22 | 7 21 19 | 3eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( 𝐴 mod 𝑁 ) = 0 ) → ( ( 𝐴 ↑ 𝐵 ) mod 𝑁 ) = ( 𝐴 mod 𝑁 ) ) |
| 23 | 22 | ex | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 mod 𝑁 ) = 0 → ( ( 𝐴 ↑ 𝐵 ) mod 𝑁 ) = ( 𝐴 mod 𝑁 ) ) ) |
| 24 | 4 23 | syld | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝑁 ∥ 𝐴 → ( ( 𝐴 ↑ 𝐵 ) mod 𝑁 ) = ( 𝐴 mod 𝑁 ) ) ) |
| 25 | 24 | 3exp | ⊢ ( 𝐴 ∈ ℤ → ( 𝑁 ∈ ℕ → ( 𝐵 ∈ ℕ → ( 𝑁 ∥ 𝐴 → ( ( 𝐴 ↑ 𝐵 ) mod 𝑁 ) = ( 𝐴 mod 𝑁 ) ) ) ) ) |
| 26 | 25 | com24 | ⊢ ( 𝐴 ∈ ℤ → ( 𝑁 ∥ 𝐴 → ( 𝐵 ∈ ℕ → ( 𝑁 ∈ ℕ → ( ( 𝐴 ↑ 𝐵 ) mod 𝑁 ) = ( 𝐴 mod 𝑁 ) ) ) ) ) |
| 27 | 26 | adantl | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 𝑁 ∥ 𝐴 → ( 𝐵 ∈ ℕ → ( 𝑁 ∈ ℕ → ( ( 𝐴 ↑ 𝐵 ) mod 𝑁 ) = ( 𝐴 mod 𝑁 ) ) ) ) ) |
| 28 | 1 27 | mpcom | ⊢ ( 𝑁 ∥ 𝐴 → ( 𝐵 ∈ ℕ → ( 𝑁 ∈ ℕ → ( ( 𝐴 ↑ 𝐵 ) mod 𝑁 ) = ( 𝐴 mod 𝑁 ) ) ) ) |
| 29 | 28 | 3imp31 | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∥ 𝐴 ) → ( ( 𝐴 ↑ 𝐵 ) mod 𝑁 ) = ( 𝐴 mod 𝑁 ) ) |