This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A filter base contains subsets of its finite intersections. (Contributed by Jeff Hankins, 1-Sep-2009) (Revised by Stefan O'Rear, 28-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fbssint | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin ) → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fbasne0 | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → 𝐹 ≠ ∅ ) | |
| 2 | n0 | ⊢ ( 𝐹 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐹 ) | |
| 3 | 1 2 | sylib | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → ∃ 𝑥 𝑥 ∈ 𝐹 ) |
| 4 | ssv | ⊢ 𝑥 ⊆ V | |
| 5 | 4 | jctr | ⊢ ( 𝑥 ∈ 𝐹 → ( 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ V ) ) |
| 6 | 5 | eximi | ⊢ ( ∃ 𝑥 𝑥 ∈ 𝐹 → ∃ 𝑥 ( 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ V ) ) |
| 7 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ V ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ V ) ) | |
| 8 | 6 7 | sylibr | ⊢ ( ∃ 𝑥 𝑥 ∈ 𝐹 → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ V ) |
| 9 | 3 8 | syl | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ V ) |
| 10 | inteq | ⊢ ( 𝐴 = ∅ → ∩ 𝐴 = ∩ ∅ ) | |
| 11 | int0 | ⊢ ∩ ∅ = V | |
| 12 | 10 11 | eqtrdi | ⊢ ( 𝐴 = ∅ → ∩ 𝐴 = V ) |
| 13 | 12 | sseq2d | ⊢ ( 𝐴 = ∅ → ( 𝑥 ⊆ ∩ 𝐴 ↔ 𝑥 ⊆ V ) ) |
| 14 | 13 | rexbidv | ⊢ ( 𝐴 = ∅ → ( ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴 ↔ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ V ) ) |
| 15 | 9 14 | syl5ibrcom | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → ( 𝐴 = ∅ → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴 ) ) |
| 16 | 15 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin ) → ( 𝐴 = ∅ → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴 ) ) |
| 17 | simpl1 | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → 𝐹 ∈ ( fBas ‘ 𝐵 ) ) | |
| 18 | simpl2 | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ⊆ 𝐹 ) | |
| 19 | simpr | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ≠ ∅ ) | |
| 20 | simpl3 | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ Fin ) | |
| 21 | elfir | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ ( 𝐴 ⊆ 𝐹 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → ∩ 𝐴 ∈ ( fi ‘ 𝐹 ) ) | |
| 22 | 17 18 19 20 21 | syl13anc | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ ( fi ‘ 𝐹 ) ) |
| 23 | fbssfi | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ ∩ 𝐴 ∈ ( fi ‘ 𝐹 ) ) → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴 ) | |
| 24 | 17 22 23 | syl2anc | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴 ) |
| 25 | 24 | ex | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin ) → ( 𝐴 ≠ ∅ → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴 ) ) |
| 26 | 16 25 | pm2.61dne | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin ) → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴 ) |