This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of f1owe , more direct since not using the isomorphism predicate, but requiring ax-un . (Contributed by NM, 4-Mar-1997) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | f1oweALT.1 | ⊢ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) } | |
| Assertion | f1oweALT | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( 𝑆 We 𝐵 → 𝑅 We 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oweALT.1 | ⊢ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) } | |
| 2 | f1ofo | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 : 𝐴 –onto→ 𝐵 ) | |
| 3 | df-fo | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 ↔ ( 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵 ) ) | |
| 4 | freq2 | ⊢ ( ran 𝐹 = 𝐵 → ( 𝑆 Fr ran 𝐹 ↔ 𝑆 Fr 𝐵 ) ) | |
| 5 | 4 | biimprd | ⊢ ( ran 𝐹 = 𝐵 → ( 𝑆 Fr 𝐵 → 𝑆 Fr ran 𝐹 ) ) |
| 6 | df-fn | ⊢ ( 𝐹 Fn 𝐴 ↔ ( Fun 𝐹 ∧ dom 𝐹 = 𝐴 ) ) | |
| 7 | df-fr | ⊢ ( 𝑆 Fr ran 𝐹 ↔ ∀ 𝑤 ( ( 𝑤 ⊆ ran 𝐹 ∧ 𝑤 ≠ ∅ ) → ∃ 𝑢 ∈ 𝑤 ∀ 𝑓 ∈ 𝑤 ¬ 𝑓 𝑆 𝑢 ) ) | |
| 8 | vex | ⊢ 𝑧 ∈ V | |
| 9 | 8 | funimaex | ⊢ ( Fun 𝐹 → ( 𝐹 “ 𝑧 ) ∈ V ) |
| 10 | n0 | ⊢ ( 𝑧 ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ 𝑧 ) | |
| 11 | funfvima2 | ⊢ ( ( Fun 𝐹 ∧ 𝑧 ⊆ dom 𝐹 ) → ( 𝑤 ∈ 𝑧 → ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 “ 𝑧 ) ) ) | |
| 12 | ne0i | ⊢ ( ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 “ 𝑧 ) → ( 𝐹 “ 𝑧 ) ≠ ∅ ) | |
| 13 | 11 12 | syl6 | ⊢ ( ( Fun 𝐹 ∧ 𝑧 ⊆ dom 𝐹 ) → ( 𝑤 ∈ 𝑧 → ( 𝐹 “ 𝑧 ) ≠ ∅ ) ) |
| 14 | 13 | exlimdv | ⊢ ( ( Fun 𝐹 ∧ 𝑧 ⊆ dom 𝐹 ) → ( ∃ 𝑤 𝑤 ∈ 𝑧 → ( 𝐹 “ 𝑧 ) ≠ ∅ ) ) |
| 15 | 10 14 | biimtrid | ⊢ ( ( Fun 𝐹 ∧ 𝑧 ⊆ dom 𝐹 ) → ( 𝑧 ≠ ∅ → ( 𝐹 “ 𝑧 ) ≠ ∅ ) ) |
| 16 | 15 | imp | ⊢ ( ( ( Fun 𝐹 ∧ 𝑧 ⊆ dom 𝐹 ) ∧ 𝑧 ≠ ∅ ) → ( 𝐹 “ 𝑧 ) ≠ ∅ ) |
| 17 | imassrn | ⊢ ( 𝐹 “ 𝑧 ) ⊆ ran 𝐹 | |
| 18 | 16 17 | jctil | ⊢ ( ( ( Fun 𝐹 ∧ 𝑧 ⊆ dom 𝐹 ) ∧ 𝑧 ≠ ∅ ) → ( ( 𝐹 “ 𝑧 ) ⊆ ran 𝐹 ∧ ( 𝐹 “ 𝑧 ) ≠ ∅ ) ) |
| 19 | sseq1 | ⊢ ( 𝑤 = ( 𝐹 “ 𝑧 ) → ( 𝑤 ⊆ ran 𝐹 ↔ ( 𝐹 “ 𝑧 ) ⊆ ran 𝐹 ) ) | |
| 20 | neeq1 | ⊢ ( 𝑤 = ( 𝐹 “ 𝑧 ) → ( 𝑤 ≠ ∅ ↔ ( 𝐹 “ 𝑧 ) ≠ ∅ ) ) | |
| 21 | 19 20 | anbi12d | ⊢ ( 𝑤 = ( 𝐹 “ 𝑧 ) → ( ( 𝑤 ⊆ ran 𝐹 ∧ 𝑤 ≠ ∅ ) ↔ ( ( 𝐹 “ 𝑧 ) ⊆ ran 𝐹 ∧ ( 𝐹 “ 𝑧 ) ≠ ∅ ) ) ) |
| 22 | raleq | ⊢ ( 𝑤 = ( 𝐹 “ 𝑧 ) → ( ∀ 𝑓 ∈ 𝑤 ¬ 𝑓 𝑆 𝑢 ↔ ∀ 𝑓 ∈ ( 𝐹 “ 𝑧 ) ¬ 𝑓 𝑆 𝑢 ) ) | |
| 23 | 22 | rexeqbi1dv | ⊢ ( 𝑤 = ( 𝐹 “ 𝑧 ) → ( ∃ 𝑢 ∈ 𝑤 ∀ 𝑓 ∈ 𝑤 ¬ 𝑓 𝑆 𝑢 ↔ ∃ 𝑢 ∈ ( 𝐹 “ 𝑧 ) ∀ 𝑓 ∈ ( 𝐹 “ 𝑧 ) ¬ 𝑓 𝑆 𝑢 ) ) |
| 24 | 21 23 | imbi12d | ⊢ ( 𝑤 = ( 𝐹 “ 𝑧 ) → ( ( ( 𝑤 ⊆ ran 𝐹 ∧ 𝑤 ≠ ∅ ) → ∃ 𝑢 ∈ 𝑤 ∀ 𝑓 ∈ 𝑤 ¬ 𝑓 𝑆 𝑢 ) ↔ ( ( ( 𝐹 “ 𝑧 ) ⊆ ran 𝐹 ∧ ( 𝐹 “ 𝑧 ) ≠ ∅ ) → ∃ 𝑢 ∈ ( 𝐹 “ 𝑧 ) ∀ 𝑓 ∈ ( 𝐹 “ 𝑧 ) ¬ 𝑓 𝑆 𝑢 ) ) ) |
| 25 | 24 | spcgv | ⊢ ( ( 𝐹 “ 𝑧 ) ∈ V → ( ∀ 𝑤 ( ( 𝑤 ⊆ ran 𝐹 ∧ 𝑤 ≠ ∅ ) → ∃ 𝑢 ∈ 𝑤 ∀ 𝑓 ∈ 𝑤 ¬ 𝑓 𝑆 𝑢 ) → ( ( ( 𝐹 “ 𝑧 ) ⊆ ran 𝐹 ∧ ( 𝐹 “ 𝑧 ) ≠ ∅ ) → ∃ 𝑢 ∈ ( 𝐹 “ 𝑧 ) ∀ 𝑓 ∈ ( 𝐹 “ 𝑧 ) ¬ 𝑓 𝑆 𝑢 ) ) ) |
| 26 | 18 25 | syl7 | ⊢ ( ( 𝐹 “ 𝑧 ) ∈ V → ( ∀ 𝑤 ( ( 𝑤 ⊆ ran 𝐹 ∧ 𝑤 ≠ ∅ ) → ∃ 𝑢 ∈ 𝑤 ∀ 𝑓 ∈ 𝑤 ¬ 𝑓 𝑆 𝑢 ) → ( ( ( Fun 𝐹 ∧ 𝑧 ⊆ dom 𝐹 ) ∧ 𝑧 ≠ ∅ ) → ∃ 𝑢 ∈ ( 𝐹 “ 𝑧 ) ∀ 𝑓 ∈ ( 𝐹 “ 𝑧 ) ¬ 𝑓 𝑆 𝑢 ) ) ) |
| 27 | 9 26 | syl | ⊢ ( Fun 𝐹 → ( ∀ 𝑤 ( ( 𝑤 ⊆ ran 𝐹 ∧ 𝑤 ≠ ∅ ) → ∃ 𝑢 ∈ 𝑤 ∀ 𝑓 ∈ 𝑤 ¬ 𝑓 𝑆 𝑢 ) → ( ( ( Fun 𝐹 ∧ 𝑧 ⊆ dom 𝐹 ) ∧ 𝑧 ≠ ∅ ) → ∃ 𝑢 ∈ ( 𝐹 “ 𝑧 ) ∀ 𝑓 ∈ ( 𝐹 “ 𝑧 ) ¬ 𝑓 𝑆 𝑢 ) ) ) |
| 28 | 7 27 | biimtrid | ⊢ ( Fun 𝐹 → ( 𝑆 Fr ran 𝐹 → ( ( ( Fun 𝐹 ∧ 𝑧 ⊆ dom 𝐹 ) ∧ 𝑧 ≠ ∅ ) → ∃ 𝑢 ∈ ( 𝐹 “ 𝑧 ) ∀ 𝑓 ∈ ( 𝐹 “ 𝑧 ) ¬ 𝑓 𝑆 𝑢 ) ) ) |
| 29 | 28 | com23 | ⊢ ( Fun 𝐹 → ( ( ( Fun 𝐹 ∧ 𝑧 ⊆ dom 𝐹 ) ∧ 𝑧 ≠ ∅ ) → ( 𝑆 Fr ran 𝐹 → ∃ 𝑢 ∈ ( 𝐹 “ 𝑧 ) ∀ 𝑓 ∈ ( 𝐹 “ 𝑧 ) ¬ 𝑓 𝑆 𝑢 ) ) ) |
| 30 | 29 | expd | ⊢ ( Fun 𝐹 → ( ( Fun 𝐹 ∧ 𝑧 ⊆ dom 𝐹 ) → ( 𝑧 ≠ ∅ → ( 𝑆 Fr ran 𝐹 → ∃ 𝑢 ∈ ( 𝐹 “ 𝑧 ) ∀ 𝑓 ∈ ( 𝐹 “ 𝑧 ) ¬ 𝑓 𝑆 𝑢 ) ) ) ) |
| 31 | 30 | anabsi5 | ⊢ ( ( Fun 𝐹 ∧ 𝑧 ⊆ dom 𝐹 ) → ( 𝑧 ≠ ∅ → ( 𝑆 Fr ran 𝐹 → ∃ 𝑢 ∈ ( 𝐹 “ 𝑧 ) ∀ 𝑓 ∈ ( 𝐹 “ 𝑧 ) ¬ 𝑓 𝑆 𝑢 ) ) ) |
| 32 | 31 | impd | ⊢ ( ( Fun 𝐹 ∧ 𝑧 ⊆ dom 𝐹 ) → ( ( 𝑧 ≠ ∅ ∧ 𝑆 Fr ran 𝐹 ) → ∃ 𝑢 ∈ ( 𝐹 “ 𝑧 ) ∀ 𝑓 ∈ ( 𝐹 “ 𝑧 ) ¬ 𝑓 𝑆 𝑢 ) ) |
| 33 | fores | ⊢ ( ( Fun 𝐹 ∧ 𝑧 ⊆ dom 𝐹 ) → ( 𝐹 ↾ 𝑧 ) : 𝑧 –onto→ ( 𝐹 “ 𝑧 ) ) | |
| 34 | vex | ⊢ 𝑣 ∈ V | |
| 35 | vex | ⊢ 𝑤 ∈ V | |
| 36 | fveq2 | ⊢ ( 𝑥 = 𝑣 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑣 ) ) | |
| 37 | 36 | breq1d | ⊢ ( 𝑥 = 𝑣 → ( ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑣 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) |
| 38 | fveq2 | ⊢ ( 𝑦 = 𝑤 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑤 ) ) | |
| 39 | 38 | breq2d | ⊢ ( 𝑦 = 𝑤 → ( ( 𝐹 ‘ 𝑣 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑣 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ) ) |
| 40 | 34 35 37 39 1 | brab | ⊢ ( 𝑣 𝑅 𝑤 ↔ ( 𝐹 ‘ 𝑣 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ) |
| 41 | fvres | ⊢ ( 𝑣 ∈ 𝑧 → ( ( 𝐹 ↾ 𝑧 ) ‘ 𝑣 ) = ( 𝐹 ‘ 𝑣 ) ) | |
| 42 | fvres | ⊢ ( 𝑤 ∈ 𝑧 → ( ( 𝐹 ↾ 𝑧 ) ‘ 𝑤 ) = ( 𝐹 ‘ 𝑤 ) ) | |
| 43 | 41 42 | breqan12rd | ⊢ ( ( 𝑤 ∈ 𝑧 ∧ 𝑣 ∈ 𝑧 ) → ( ( ( 𝐹 ↾ 𝑧 ) ‘ 𝑣 ) 𝑆 ( ( 𝐹 ↾ 𝑧 ) ‘ 𝑤 ) ↔ ( 𝐹 ‘ 𝑣 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ) ) |
| 44 | 40 43 | bitr4id | ⊢ ( ( 𝑤 ∈ 𝑧 ∧ 𝑣 ∈ 𝑧 ) → ( 𝑣 𝑅 𝑤 ↔ ( ( 𝐹 ↾ 𝑧 ) ‘ 𝑣 ) 𝑆 ( ( 𝐹 ↾ 𝑧 ) ‘ 𝑤 ) ) ) |
| 45 | 44 | notbid | ⊢ ( ( 𝑤 ∈ 𝑧 ∧ 𝑣 ∈ 𝑧 ) → ( ¬ 𝑣 𝑅 𝑤 ↔ ¬ ( ( 𝐹 ↾ 𝑧 ) ‘ 𝑣 ) 𝑆 ( ( 𝐹 ↾ 𝑧 ) ‘ 𝑤 ) ) ) |
| 46 | 45 | ralbidva | ⊢ ( 𝑤 ∈ 𝑧 → ( ∀ 𝑣 ∈ 𝑧 ¬ 𝑣 𝑅 𝑤 ↔ ∀ 𝑣 ∈ 𝑧 ¬ ( ( 𝐹 ↾ 𝑧 ) ‘ 𝑣 ) 𝑆 ( ( 𝐹 ↾ 𝑧 ) ‘ 𝑤 ) ) ) |
| 47 | 46 | rexbiia | ⊢ ( ∃ 𝑤 ∈ 𝑧 ∀ 𝑣 ∈ 𝑧 ¬ 𝑣 𝑅 𝑤 ↔ ∃ 𝑤 ∈ 𝑧 ∀ 𝑣 ∈ 𝑧 ¬ ( ( 𝐹 ↾ 𝑧 ) ‘ 𝑣 ) 𝑆 ( ( 𝐹 ↾ 𝑧 ) ‘ 𝑤 ) ) |
| 48 | breq1 | ⊢ ( ( ( 𝐹 ↾ 𝑧 ) ‘ 𝑣 ) = 𝑓 → ( ( ( 𝐹 ↾ 𝑧 ) ‘ 𝑣 ) 𝑆 ( ( 𝐹 ↾ 𝑧 ) ‘ 𝑤 ) ↔ 𝑓 𝑆 ( ( 𝐹 ↾ 𝑧 ) ‘ 𝑤 ) ) ) | |
| 49 | 48 | notbid | ⊢ ( ( ( 𝐹 ↾ 𝑧 ) ‘ 𝑣 ) = 𝑓 → ( ¬ ( ( 𝐹 ↾ 𝑧 ) ‘ 𝑣 ) 𝑆 ( ( 𝐹 ↾ 𝑧 ) ‘ 𝑤 ) ↔ ¬ 𝑓 𝑆 ( ( 𝐹 ↾ 𝑧 ) ‘ 𝑤 ) ) ) |
| 50 | 49 | cbvfo | ⊢ ( ( 𝐹 ↾ 𝑧 ) : 𝑧 –onto→ ( 𝐹 “ 𝑧 ) → ( ∀ 𝑣 ∈ 𝑧 ¬ ( ( 𝐹 ↾ 𝑧 ) ‘ 𝑣 ) 𝑆 ( ( 𝐹 ↾ 𝑧 ) ‘ 𝑤 ) ↔ ∀ 𝑓 ∈ ( 𝐹 “ 𝑧 ) ¬ 𝑓 𝑆 ( ( 𝐹 ↾ 𝑧 ) ‘ 𝑤 ) ) ) |
| 51 | 50 | rexbidv | ⊢ ( ( 𝐹 ↾ 𝑧 ) : 𝑧 –onto→ ( 𝐹 “ 𝑧 ) → ( ∃ 𝑤 ∈ 𝑧 ∀ 𝑣 ∈ 𝑧 ¬ ( ( 𝐹 ↾ 𝑧 ) ‘ 𝑣 ) 𝑆 ( ( 𝐹 ↾ 𝑧 ) ‘ 𝑤 ) ↔ ∃ 𝑤 ∈ 𝑧 ∀ 𝑓 ∈ ( 𝐹 “ 𝑧 ) ¬ 𝑓 𝑆 ( ( 𝐹 ↾ 𝑧 ) ‘ 𝑤 ) ) ) |
| 52 | breq2 | ⊢ ( ( ( 𝐹 ↾ 𝑧 ) ‘ 𝑤 ) = 𝑢 → ( 𝑓 𝑆 ( ( 𝐹 ↾ 𝑧 ) ‘ 𝑤 ) ↔ 𝑓 𝑆 𝑢 ) ) | |
| 53 | 52 | notbid | ⊢ ( ( ( 𝐹 ↾ 𝑧 ) ‘ 𝑤 ) = 𝑢 → ( ¬ 𝑓 𝑆 ( ( 𝐹 ↾ 𝑧 ) ‘ 𝑤 ) ↔ ¬ 𝑓 𝑆 𝑢 ) ) |
| 54 | 53 | ralbidv | ⊢ ( ( ( 𝐹 ↾ 𝑧 ) ‘ 𝑤 ) = 𝑢 → ( ∀ 𝑓 ∈ ( 𝐹 “ 𝑧 ) ¬ 𝑓 𝑆 ( ( 𝐹 ↾ 𝑧 ) ‘ 𝑤 ) ↔ ∀ 𝑓 ∈ ( 𝐹 “ 𝑧 ) ¬ 𝑓 𝑆 𝑢 ) ) |
| 55 | 54 | cbvexfo | ⊢ ( ( 𝐹 ↾ 𝑧 ) : 𝑧 –onto→ ( 𝐹 “ 𝑧 ) → ( ∃ 𝑤 ∈ 𝑧 ∀ 𝑓 ∈ ( 𝐹 “ 𝑧 ) ¬ 𝑓 𝑆 ( ( 𝐹 ↾ 𝑧 ) ‘ 𝑤 ) ↔ ∃ 𝑢 ∈ ( 𝐹 “ 𝑧 ) ∀ 𝑓 ∈ ( 𝐹 “ 𝑧 ) ¬ 𝑓 𝑆 𝑢 ) ) |
| 56 | 51 55 | bitrd | ⊢ ( ( 𝐹 ↾ 𝑧 ) : 𝑧 –onto→ ( 𝐹 “ 𝑧 ) → ( ∃ 𝑤 ∈ 𝑧 ∀ 𝑣 ∈ 𝑧 ¬ ( ( 𝐹 ↾ 𝑧 ) ‘ 𝑣 ) 𝑆 ( ( 𝐹 ↾ 𝑧 ) ‘ 𝑤 ) ↔ ∃ 𝑢 ∈ ( 𝐹 “ 𝑧 ) ∀ 𝑓 ∈ ( 𝐹 “ 𝑧 ) ¬ 𝑓 𝑆 𝑢 ) ) |
| 57 | 47 56 | bitrid | ⊢ ( ( 𝐹 ↾ 𝑧 ) : 𝑧 –onto→ ( 𝐹 “ 𝑧 ) → ( ∃ 𝑤 ∈ 𝑧 ∀ 𝑣 ∈ 𝑧 ¬ 𝑣 𝑅 𝑤 ↔ ∃ 𝑢 ∈ ( 𝐹 “ 𝑧 ) ∀ 𝑓 ∈ ( 𝐹 “ 𝑧 ) ¬ 𝑓 𝑆 𝑢 ) ) |
| 58 | 33 57 | syl | ⊢ ( ( Fun 𝐹 ∧ 𝑧 ⊆ dom 𝐹 ) → ( ∃ 𝑤 ∈ 𝑧 ∀ 𝑣 ∈ 𝑧 ¬ 𝑣 𝑅 𝑤 ↔ ∃ 𝑢 ∈ ( 𝐹 “ 𝑧 ) ∀ 𝑓 ∈ ( 𝐹 “ 𝑧 ) ¬ 𝑓 𝑆 𝑢 ) ) |
| 59 | 32 58 | sylibrd | ⊢ ( ( Fun 𝐹 ∧ 𝑧 ⊆ dom 𝐹 ) → ( ( 𝑧 ≠ ∅ ∧ 𝑆 Fr ran 𝐹 ) → ∃ 𝑤 ∈ 𝑧 ∀ 𝑣 ∈ 𝑧 ¬ 𝑣 𝑅 𝑤 ) ) |
| 60 | 59 | exp4b | ⊢ ( Fun 𝐹 → ( 𝑧 ⊆ dom 𝐹 → ( 𝑧 ≠ ∅ → ( 𝑆 Fr ran 𝐹 → ∃ 𝑤 ∈ 𝑧 ∀ 𝑣 ∈ 𝑧 ¬ 𝑣 𝑅 𝑤 ) ) ) ) |
| 61 | 60 | com34 | ⊢ ( Fun 𝐹 → ( 𝑧 ⊆ dom 𝐹 → ( 𝑆 Fr ran 𝐹 → ( 𝑧 ≠ ∅ → ∃ 𝑤 ∈ 𝑧 ∀ 𝑣 ∈ 𝑧 ¬ 𝑣 𝑅 𝑤 ) ) ) ) |
| 62 | 61 | com23 | ⊢ ( Fun 𝐹 → ( 𝑆 Fr ran 𝐹 → ( 𝑧 ⊆ dom 𝐹 → ( 𝑧 ≠ ∅ → ∃ 𝑤 ∈ 𝑧 ∀ 𝑣 ∈ 𝑧 ¬ 𝑣 𝑅 𝑤 ) ) ) ) |
| 63 | 62 | imp4a | ⊢ ( Fun 𝐹 → ( 𝑆 Fr ran 𝐹 → ( ( 𝑧 ⊆ dom 𝐹 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑤 ∈ 𝑧 ∀ 𝑣 ∈ 𝑧 ¬ 𝑣 𝑅 𝑤 ) ) ) |
| 64 | 63 | alrimdv | ⊢ ( Fun 𝐹 → ( 𝑆 Fr ran 𝐹 → ∀ 𝑧 ( ( 𝑧 ⊆ dom 𝐹 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑤 ∈ 𝑧 ∀ 𝑣 ∈ 𝑧 ¬ 𝑣 𝑅 𝑤 ) ) ) |
| 65 | df-fr | ⊢ ( 𝑅 Fr dom 𝐹 ↔ ∀ 𝑧 ( ( 𝑧 ⊆ dom 𝐹 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑤 ∈ 𝑧 ∀ 𝑣 ∈ 𝑧 ¬ 𝑣 𝑅 𝑤 ) ) | |
| 66 | 64 65 | imbitrrdi | ⊢ ( Fun 𝐹 → ( 𝑆 Fr ran 𝐹 → 𝑅 Fr dom 𝐹 ) ) |
| 67 | freq2 | ⊢ ( dom 𝐹 = 𝐴 → ( 𝑅 Fr dom 𝐹 ↔ 𝑅 Fr 𝐴 ) ) | |
| 68 | 67 | biimpd | ⊢ ( dom 𝐹 = 𝐴 → ( 𝑅 Fr dom 𝐹 → 𝑅 Fr 𝐴 ) ) |
| 69 | 66 68 | sylan9 | ⊢ ( ( Fun 𝐹 ∧ dom 𝐹 = 𝐴 ) → ( 𝑆 Fr ran 𝐹 → 𝑅 Fr 𝐴 ) ) |
| 70 | 6 69 | sylbi | ⊢ ( 𝐹 Fn 𝐴 → ( 𝑆 Fr ran 𝐹 → 𝑅 Fr 𝐴 ) ) |
| 71 | 5 70 | sylan9r | ⊢ ( ( 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵 ) → ( 𝑆 Fr 𝐵 → 𝑅 Fr 𝐴 ) ) |
| 72 | 3 71 | sylbi | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ( 𝑆 Fr 𝐵 → 𝑅 Fr 𝐴 ) ) |
| 73 | 2 72 | syl | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( 𝑆 Fr 𝐵 → 𝑅 Fr 𝐴 ) ) |
| 74 | df-f1o | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ↔ ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ) | |
| 75 | fveq2 | ⊢ ( 𝑥 = 𝑤 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑤 ) ) | |
| 76 | 75 | breq1d | ⊢ ( 𝑥 = 𝑤 → ( ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) |
| 77 | fveq2 | ⊢ ( 𝑦 = 𝑣 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑣 ) ) | |
| 78 | 77 | breq2d | ⊢ ( 𝑦 = 𝑣 → ( ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑣 ) ) ) |
| 79 | 35 34 76 78 1 | brab | ⊢ ( 𝑤 𝑅 𝑣 ↔ ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑣 ) ) |
| 80 | 79 | a1i | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ ( 𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( 𝑤 𝑅 𝑣 ↔ ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑣 ) ) ) |
| 81 | f1fveq | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ ( 𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑣 ) ↔ 𝑤 = 𝑣 ) ) | |
| 82 | 81 | bicomd | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ ( 𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( 𝑤 = 𝑣 ↔ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑣 ) ) ) |
| 83 | 40 | a1i | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ ( 𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( 𝑣 𝑅 𝑤 ↔ ( 𝐹 ‘ 𝑣 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ) ) |
| 84 | 80 82 83 | 3orbi123d | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ ( 𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( ( 𝑤 𝑅 𝑣 ∨ 𝑤 = 𝑣 ∨ 𝑣 𝑅 𝑤 ) ↔ ( ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑣 ) ∨ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑣 ) ∨ ( 𝐹 ‘ 𝑣 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 85 | 84 | 2ralbidva | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑤 𝑅 𝑣 ∨ 𝑤 = 𝑣 ∨ 𝑣 𝑅 𝑤 ) ↔ ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑣 ) ∨ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑣 ) ∨ ( 𝐹 ‘ 𝑣 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 86 | breq1 | ⊢ ( ( 𝐹 ‘ 𝑤 ) = 𝑢 → ( ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑣 ) ↔ 𝑢 𝑆 ( 𝐹 ‘ 𝑣 ) ) ) | |
| 87 | eqeq1 | ⊢ ( ( 𝐹 ‘ 𝑤 ) = 𝑢 → ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑣 ) ↔ 𝑢 = ( 𝐹 ‘ 𝑣 ) ) ) | |
| 88 | breq2 | ⊢ ( ( 𝐹 ‘ 𝑤 ) = 𝑢 → ( ( 𝐹 ‘ 𝑣 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ↔ ( 𝐹 ‘ 𝑣 ) 𝑆 𝑢 ) ) | |
| 89 | 86 87 88 | 3orbi123d | ⊢ ( ( 𝐹 ‘ 𝑤 ) = 𝑢 → ( ( ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑣 ) ∨ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑣 ) ∨ ( 𝐹 ‘ 𝑣 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ) ↔ ( 𝑢 𝑆 ( 𝐹 ‘ 𝑣 ) ∨ 𝑢 = ( 𝐹 ‘ 𝑣 ) ∨ ( 𝐹 ‘ 𝑣 ) 𝑆 𝑢 ) ) ) |
| 90 | 89 | ralbidv | ⊢ ( ( 𝐹 ‘ 𝑤 ) = 𝑢 → ( ∀ 𝑣 ∈ 𝐴 ( ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑣 ) ∨ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑣 ) ∨ ( 𝐹 ‘ 𝑣 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ) ↔ ∀ 𝑣 ∈ 𝐴 ( 𝑢 𝑆 ( 𝐹 ‘ 𝑣 ) ∨ 𝑢 = ( 𝐹 ‘ 𝑣 ) ∨ ( 𝐹 ‘ 𝑣 ) 𝑆 𝑢 ) ) ) |
| 91 | 90 | cbvfo | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ( ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑣 ) ∨ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑣 ) ∨ ( 𝐹 ‘ 𝑣 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ) ↔ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐴 ( 𝑢 𝑆 ( 𝐹 ‘ 𝑣 ) ∨ 𝑢 = ( 𝐹 ‘ 𝑣 ) ∨ ( 𝐹 ‘ 𝑣 ) 𝑆 𝑢 ) ) ) |
| 92 | breq2 | ⊢ ( ( 𝐹 ‘ 𝑣 ) = 𝑓 → ( 𝑢 𝑆 ( 𝐹 ‘ 𝑣 ) ↔ 𝑢 𝑆 𝑓 ) ) | |
| 93 | eqeq2 | ⊢ ( ( 𝐹 ‘ 𝑣 ) = 𝑓 → ( 𝑢 = ( 𝐹 ‘ 𝑣 ) ↔ 𝑢 = 𝑓 ) ) | |
| 94 | breq1 | ⊢ ( ( 𝐹 ‘ 𝑣 ) = 𝑓 → ( ( 𝐹 ‘ 𝑣 ) 𝑆 𝑢 ↔ 𝑓 𝑆 𝑢 ) ) | |
| 95 | 92 93 94 | 3orbi123d | ⊢ ( ( 𝐹 ‘ 𝑣 ) = 𝑓 → ( ( 𝑢 𝑆 ( 𝐹 ‘ 𝑣 ) ∨ 𝑢 = ( 𝐹 ‘ 𝑣 ) ∨ ( 𝐹 ‘ 𝑣 ) 𝑆 𝑢 ) ↔ ( 𝑢 𝑆 𝑓 ∨ 𝑢 = 𝑓 ∨ 𝑓 𝑆 𝑢 ) ) ) |
| 96 | 95 | cbvfo | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ( ∀ 𝑣 ∈ 𝐴 ( 𝑢 𝑆 ( 𝐹 ‘ 𝑣 ) ∨ 𝑢 = ( 𝐹 ‘ 𝑣 ) ∨ ( 𝐹 ‘ 𝑣 ) 𝑆 𝑢 ) ↔ ∀ 𝑓 ∈ 𝐵 ( 𝑢 𝑆 𝑓 ∨ 𝑢 = 𝑓 ∨ 𝑓 𝑆 𝑢 ) ) ) |
| 97 | 96 | ralbidv | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ( ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐴 ( 𝑢 𝑆 ( 𝐹 ‘ 𝑣 ) ∨ 𝑢 = ( 𝐹 ‘ 𝑣 ) ∨ ( 𝐹 ‘ 𝑣 ) 𝑆 𝑢 ) ↔ ∀ 𝑢 ∈ 𝐵 ∀ 𝑓 ∈ 𝐵 ( 𝑢 𝑆 𝑓 ∨ 𝑢 = 𝑓 ∨ 𝑓 𝑆 𝑢 ) ) ) |
| 98 | 91 97 | bitrd | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ( ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑣 ) ∨ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑣 ) ∨ ( 𝐹 ‘ 𝑣 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ) ↔ ∀ 𝑢 ∈ 𝐵 ∀ 𝑓 ∈ 𝐵 ( 𝑢 𝑆 𝑓 ∨ 𝑢 = 𝑓 ∨ 𝑓 𝑆 𝑢 ) ) ) |
| 99 | 85 98 | sylan9bb | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → ( ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑤 𝑅 𝑣 ∨ 𝑤 = 𝑣 ∨ 𝑣 𝑅 𝑤 ) ↔ ∀ 𝑢 ∈ 𝐵 ∀ 𝑓 ∈ 𝐵 ( 𝑢 𝑆 𝑓 ∨ 𝑢 = 𝑓 ∨ 𝑓 𝑆 𝑢 ) ) ) |
| 100 | 74 99 | sylbi | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑤 𝑅 𝑣 ∨ 𝑤 = 𝑣 ∨ 𝑣 𝑅 𝑤 ) ↔ ∀ 𝑢 ∈ 𝐵 ∀ 𝑓 ∈ 𝐵 ( 𝑢 𝑆 𝑓 ∨ 𝑢 = 𝑓 ∨ 𝑓 𝑆 𝑢 ) ) ) |
| 101 | 100 | biimprd | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( ∀ 𝑢 ∈ 𝐵 ∀ 𝑓 ∈ 𝐵 ( 𝑢 𝑆 𝑓 ∨ 𝑢 = 𝑓 ∨ 𝑓 𝑆 𝑢 ) → ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑤 𝑅 𝑣 ∨ 𝑤 = 𝑣 ∨ 𝑣 𝑅 𝑤 ) ) ) |
| 102 | 73 101 | anim12d | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( ( 𝑆 Fr 𝐵 ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑓 ∈ 𝐵 ( 𝑢 𝑆 𝑓 ∨ 𝑢 = 𝑓 ∨ 𝑓 𝑆 𝑢 ) ) → ( 𝑅 Fr 𝐴 ∧ ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑤 𝑅 𝑣 ∨ 𝑤 = 𝑣 ∨ 𝑣 𝑅 𝑤 ) ) ) ) |
| 103 | dfwe2 | ⊢ ( 𝑆 We 𝐵 ↔ ( 𝑆 Fr 𝐵 ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑓 ∈ 𝐵 ( 𝑢 𝑆 𝑓 ∨ 𝑢 = 𝑓 ∨ 𝑓 𝑆 𝑢 ) ) ) | |
| 104 | dfwe2 | ⊢ ( 𝑅 We 𝐴 ↔ ( 𝑅 Fr 𝐴 ∧ ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑤 𝑅 𝑣 ∨ 𝑤 = 𝑣 ∨ 𝑣 𝑅 𝑤 ) ) ) | |
| 105 | 102 103 104 | 3imtr4g | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( 𝑆 We 𝐵 → 𝑅 We 𝐴 ) ) |