This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of f1owe , more direct since not using the isomorphism predicate, but requiring ax-un . (Contributed by NM, 4-Mar-1997) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | f1oweALT.1 | |- R = { <. x , y >. | ( F ` x ) S ( F ` y ) } |
|
| Assertion | f1oweALT | |- ( F : A -1-1-onto-> B -> ( S We B -> R We A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oweALT.1 | |- R = { <. x , y >. | ( F ` x ) S ( F ` y ) } |
|
| 2 | f1ofo | |- ( F : A -1-1-onto-> B -> F : A -onto-> B ) |
|
| 3 | df-fo | |- ( F : A -onto-> B <-> ( F Fn A /\ ran F = B ) ) |
|
| 4 | freq2 | |- ( ran F = B -> ( S Fr ran F <-> S Fr B ) ) |
|
| 5 | 4 | biimprd | |- ( ran F = B -> ( S Fr B -> S Fr ran F ) ) |
| 6 | df-fn | |- ( F Fn A <-> ( Fun F /\ dom F = A ) ) |
|
| 7 | df-fr | |- ( S Fr ran F <-> A. w ( ( w C_ ran F /\ w =/= (/) ) -> E. u e. w A. f e. w -. f S u ) ) |
|
| 8 | vex | |- z e. _V |
|
| 9 | 8 | funimaex | |- ( Fun F -> ( F " z ) e. _V ) |
| 10 | n0 | |- ( z =/= (/) <-> E. w w e. z ) |
|
| 11 | funfvima2 | |- ( ( Fun F /\ z C_ dom F ) -> ( w e. z -> ( F ` w ) e. ( F " z ) ) ) |
|
| 12 | ne0i | |- ( ( F ` w ) e. ( F " z ) -> ( F " z ) =/= (/) ) |
|
| 13 | 11 12 | syl6 | |- ( ( Fun F /\ z C_ dom F ) -> ( w e. z -> ( F " z ) =/= (/) ) ) |
| 14 | 13 | exlimdv | |- ( ( Fun F /\ z C_ dom F ) -> ( E. w w e. z -> ( F " z ) =/= (/) ) ) |
| 15 | 10 14 | biimtrid | |- ( ( Fun F /\ z C_ dom F ) -> ( z =/= (/) -> ( F " z ) =/= (/) ) ) |
| 16 | 15 | imp | |- ( ( ( Fun F /\ z C_ dom F ) /\ z =/= (/) ) -> ( F " z ) =/= (/) ) |
| 17 | imassrn | |- ( F " z ) C_ ran F |
|
| 18 | 16 17 | jctil | |- ( ( ( Fun F /\ z C_ dom F ) /\ z =/= (/) ) -> ( ( F " z ) C_ ran F /\ ( F " z ) =/= (/) ) ) |
| 19 | sseq1 | |- ( w = ( F " z ) -> ( w C_ ran F <-> ( F " z ) C_ ran F ) ) |
|
| 20 | neeq1 | |- ( w = ( F " z ) -> ( w =/= (/) <-> ( F " z ) =/= (/) ) ) |
|
| 21 | 19 20 | anbi12d | |- ( w = ( F " z ) -> ( ( w C_ ran F /\ w =/= (/) ) <-> ( ( F " z ) C_ ran F /\ ( F " z ) =/= (/) ) ) ) |
| 22 | raleq | |- ( w = ( F " z ) -> ( A. f e. w -. f S u <-> A. f e. ( F " z ) -. f S u ) ) |
|
| 23 | 22 | rexeqbi1dv | |- ( w = ( F " z ) -> ( E. u e. w A. f e. w -. f S u <-> E. u e. ( F " z ) A. f e. ( F " z ) -. f S u ) ) |
| 24 | 21 23 | imbi12d | |- ( w = ( F " z ) -> ( ( ( w C_ ran F /\ w =/= (/) ) -> E. u e. w A. f e. w -. f S u ) <-> ( ( ( F " z ) C_ ran F /\ ( F " z ) =/= (/) ) -> E. u e. ( F " z ) A. f e. ( F " z ) -. f S u ) ) ) |
| 25 | 24 | spcgv | |- ( ( F " z ) e. _V -> ( A. w ( ( w C_ ran F /\ w =/= (/) ) -> E. u e. w A. f e. w -. f S u ) -> ( ( ( F " z ) C_ ran F /\ ( F " z ) =/= (/) ) -> E. u e. ( F " z ) A. f e. ( F " z ) -. f S u ) ) ) |
| 26 | 18 25 | syl7 | |- ( ( F " z ) e. _V -> ( A. w ( ( w C_ ran F /\ w =/= (/) ) -> E. u e. w A. f e. w -. f S u ) -> ( ( ( Fun F /\ z C_ dom F ) /\ z =/= (/) ) -> E. u e. ( F " z ) A. f e. ( F " z ) -. f S u ) ) ) |
| 27 | 9 26 | syl | |- ( Fun F -> ( A. w ( ( w C_ ran F /\ w =/= (/) ) -> E. u e. w A. f e. w -. f S u ) -> ( ( ( Fun F /\ z C_ dom F ) /\ z =/= (/) ) -> E. u e. ( F " z ) A. f e. ( F " z ) -. f S u ) ) ) |
| 28 | 7 27 | biimtrid | |- ( Fun F -> ( S Fr ran F -> ( ( ( Fun F /\ z C_ dom F ) /\ z =/= (/) ) -> E. u e. ( F " z ) A. f e. ( F " z ) -. f S u ) ) ) |
| 29 | 28 | com23 | |- ( Fun F -> ( ( ( Fun F /\ z C_ dom F ) /\ z =/= (/) ) -> ( S Fr ran F -> E. u e. ( F " z ) A. f e. ( F " z ) -. f S u ) ) ) |
| 30 | 29 | expd | |- ( Fun F -> ( ( Fun F /\ z C_ dom F ) -> ( z =/= (/) -> ( S Fr ran F -> E. u e. ( F " z ) A. f e. ( F " z ) -. f S u ) ) ) ) |
| 31 | 30 | anabsi5 | |- ( ( Fun F /\ z C_ dom F ) -> ( z =/= (/) -> ( S Fr ran F -> E. u e. ( F " z ) A. f e. ( F " z ) -. f S u ) ) ) |
| 32 | 31 | impd | |- ( ( Fun F /\ z C_ dom F ) -> ( ( z =/= (/) /\ S Fr ran F ) -> E. u e. ( F " z ) A. f e. ( F " z ) -. f S u ) ) |
| 33 | fores | |- ( ( Fun F /\ z C_ dom F ) -> ( F |` z ) : z -onto-> ( F " z ) ) |
|
| 34 | vex | |- v e. _V |
|
| 35 | vex | |- w e. _V |
|
| 36 | fveq2 | |- ( x = v -> ( F ` x ) = ( F ` v ) ) |
|
| 37 | 36 | breq1d | |- ( x = v -> ( ( F ` x ) S ( F ` y ) <-> ( F ` v ) S ( F ` y ) ) ) |
| 38 | fveq2 | |- ( y = w -> ( F ` y ) = ( F ` w ) ) |
|
| 39 | 38 | breq2d | |- ( y = w -> ( ( F ` v ) S ( F ` y ) <-> ( F ` v ) S ( F ` w ) ) ) |
| 40 | 34 35 37 39 1 | brab | |- ( v R w <-> ( F ` v ) S ( F ` w ) ) |
| 41 | fvres | |- ( v e. z -> ( ( F |` z ) ` v ) = ( F ` v ) ) |
|
| 42 | fvres | |- ( w e. z -> ( ( F |` z ) ` w ) = ( F ` w ) ) |
|
| 43 | 41 42 | breqan12rd | |- ( ( w e. z /\ v e. z ) -> ( ( ( F |` z ) ` v ) S ( ( F |` z ) ` w ) <-> ( F ` v ) S ( F ` w ) ) ) |
| 44 | 40 43 | bitr4id | |- ( ( w e. z /\ v e. z ) -> ( v R w <-> ( ( F |` z ) ` v ) S ( ( F |` z ) ` w ) ) ) |
| 45 | 44 | notbid | |- ( ( w e. z /\ v e. z ) -> ( -. v R w <-> -. ( ( F |` z ) ` v ) S ( ( F |` z ) ` w ) ) ) |
| 46 | 45 | ralbidva | |- ( w e. z -> ( A. v e. z -. v R w <-> A. v e. z -. ( ( F |` z ) ` v ) S ( ( F |` z ) ` w ) ) ) |
| 47 | 46 | rexbiia | |- ( E. w e. z A. v e. z -. v R w <-> E. w e. z A. v e. z -. ( ( F |` z ) ` v ) S ( ( F |` z ) ` w ) ) |
| 48 | breq1 | |- ( ( ( F |` z ) ` v ) = f -> ( ( ( F |` z ) ` v ) S ( ( F |` z ) ` w ) <-> f S ( ( F |` z ) ` w ) ) ) |
|
| 49 | 48 | notbid | |- ( ( ( F |` z ) ` v ) = f -> ( -. ( ( F |` z ) ` v ) S ( ( F |` z ) ` w ) <-> -. f S ( ( F |` z ) ` w ) ) ) |
| 50 | 49 | cbvfo | |- ( ( F |` z ) : z -onto-> ( F " z ) -> ( A. v e. z -. ( ( F |` z ) ` v ) S ( ( F |` z ) ` w ) <-> A. f e. ( F " z ) -. f S ( ( F |` z ) ` w ) ) ) |
| 51 | 50 | rexbidv | |- ( ( F |` z ) : z -onto-> ( F " z ) -> ( E. w e. z A. v e. z -. ( ( F |` z ) ` v ) S ( ( F |` z ) ` w ) <-> E. w e. z A. f e. ( F " z ) -. f S ( ( F |` z ) ` w ) ) ) |
| 52 | breq2 | |- ( ( ( F |` z ) ` w ) = u -> ( f S ( ( F |` z ) ` w ) <-> f S u ) ) |
|
| 53 | 52 | notbid | |- ( ( ( F |` z ) ` w ) = u -> ( -. f S ( ( F |` z ) ` w ) <-> -. f S u ) ) |
| 54 | 53 | ralbidv | |- ( ( ( F |` z ) ` w ) = u -> ( A. f e. ( F " z ) -. f S ( ( F |` z ) ` w ) <-> A. f e. ( F " z ) -. f S u ) ) |
| 55 | 54 | cbvexfo | |- ( ( F |` z ) : z -onto-> ( F " z ) -> ( E. w e. z A. f e. ( F " z ) -. f S ( ( F |` z ) ` w ) <-> E. u e. ( F " z ) A. f e. ( F " z ) -. f S u ) ) |
| 56 | 51 55 | bitrd | |- ( ( F |` z ) : z -onto-> ( F " z ) -> ( E. w e. z A. v e. z -. ( ( F |` z ) ` v ) S ( ( F |` z ) ` w ) <-> E. u e. ( F " z ) A. f e. ( F " z ) -. f S u ) ) |
| 57 | 47 56 | bitrid | |- ( ( F |` z ) : z -onto-> ( F " z ) -> ( E. w e. z A. v e. z -. v R w <-> E. u e. ( F " z ) A. f e. ( F " z ) -. f S u ) ) |
| 58 | 33 57 | syl | |- ( ( Fun F /\ z C_ dom F ) -> ( E. w e. z A. v e. z -. v R w <-> E. u e. ( F " z ) A. f e. ( F " z ) -. f S u ) ) |
| 59 | 32 58 | sylibrd | |- ( ( Fun F /\ z C_ dom F ) -> ( ( z =/= (/) /\ S Fr ran F ) -> E. w e. z A. v e. z -. v R w ) ) |
| 60 | 59 | exp4b | |- ( Fun F -> ( z C_ dom F -> ( z =/= (/) -> ( S Fr ran F -> E. w e. z A. v e. z -. v R w ) ) ) ) |
| 61 | 60 | com34 | |- ( Fun F -> ( z C_ dom F -> ( S Fr ran F -> ( z =/= (/) -> E. w e. z A. v e. z -. v R w ) ) ) ) |
| 62 | 61 | com23 | |- ( Fun F -> ( S Fr ran F -> ( z C_ dom F -> ( z =/= (/) -> E. w e. z A. v e. z -. v R w ) ) ) ) |
| 63 | 62 | imp4a | |- ( Fun F -> ( S Fr ran F -> ( ( z C_ dom F /\ z =/= (/) ) -> E. w e. z A. v e. z -. v R w ) ) ) |
| 64 | 63 | alrimdv | |- ( Fun F -> ( S Fr ran F -> A. z ( ( z C_ dom F /\ z =/= (/) ) -> E. w e. z A. v e. z -. v R w ) ) ) |
| 65 | df-fr | |- ( R Fr dom F <-> A. z ( ( z C_ dom F /\ z =/= (/) ) -> E. w e. z A. v e. z -. v R w ) ) |
|
| 66 | 64 65 | imbitrrdi | |- ( Fun F -> ( S Fr ran F -> R Fr dom F ) ) |
| 67 | freq2 | |- ( dom F = A -> ( R Fr dom F <-> R Fr A ) ) |
|
| 68 | 67 | biimpd | |- ( dom F = A -> ( R Fr dom F -> R Fr A ) ) |
| 69 | 66 68 | sylan9 | |- ( ( Fun F /\ dom F = A ) -> ( S Fr ran F -> R Fr A ) ) |
| 70 | 6 69 | sylbi | |- ( F Fn A -> ( S Fr ran F -> R Fr A ) ) |
| 71 | 5 70 | sylan9r | |- ( ( F Fn A /\ ran F = B ) -> ( S Fr B -> R Fr A ) ) |
| 72 | 3 71 | sylbi | |- ( F : A -onto-> B -> ( S Fr B -> R Fr A ) ) |
| 73 | 2 72 | syl | |- ( F : A -1-1-onto-> B -> ( S Fr B -> R Fr A ) ) |
| 74 | df-f1o | |- ( F : A -1-1-onto-> B <-> ( F : A -1-1-> B /\ F : A -onto-> B ) ) |
|
| 75 | fveq2 | |- ( x = w -> ( F ` x ) = ( F ` w ) ) |
|
| 76 | 75 | breq1d | |- ( x = w -> ( ( F ` x ) S ( F ` y ) <-> ( F ` w ) S ( F ` y ) ) ) |
| 77 | fveq2 | |- ( y = v -> ( F ` y ) = ( F ` v ) ) |
|
| 78 | 77 | breq2d | |- ( y = v -> ( ( F ` w ) S ( F ` y ) <-> ( F ` w ) S ( F ` v ) ) ) |
| 79 | 35 34 76 78 1 | brab | |- ( w R v <-> ( F ` w ) S ( F ` v ) ) |
| 80 | 79 | a1i | |- ( ( F : A -1-1-> B /\ ( w e. A /\ v e. A ) ) -> ( w R v <-> ( F ` w ) S ( F ` v ) ) ) |
| 81 | f1fveq | |- ( ( F : A -1-1-> B /\ ( w e. A /\ v e. A ) ) -> ( ( F ` w ) = ( F ` v ) <-> w = v ) ) |
|
| 82 | 81 | bicomd | |- ( ( F : A -1-1-> B /\ ( w e. A /\ v e. A ) ) -> ( w = v <-> ( F ` w ) = ( F ` v ) ) ) |
| 83 | 40 | a1i | |- ( ( F : A -1-1-> B /\ ( w e. A /\ v e. A ) ) -> ( v R w <-> ( F ` v ) S ( F ` w ) ) ) |
| 84 | 80 82 83 | 3orbi123d | |- ( ( F : A -1-1-> B /\ ( w e. A /\ v e. A ) ) -> ( ( w R v \/ w = v \/ v R w ) <-> ( ( F ` w ) S ( F ` v ) \/ ( F ` w ) = ( F ` v ) \/ ( F ` v ) S ( F ` w ) ) ) ) |
| 85 | 84 | 2ralbidva | |- ( F : A -1-1-> B -> ( A. w e. A A. v e. A ( w R v \/ w = v \/ v R w ) <-> A. w e. A A. v e. A ( ( F ` w ) S ( F ` v ) \/ ( F ` w ) = ( F ` v ) \/ ( F ` v ) S ( F ` w ) ) ) ) |
| 86 | breq1 | |- ( ( F ` w ) = u -> ( ( F ` w ) S ( F ` v ) <-> u S ( F ` v ) ) ) |
|
| 87 | eqeq1 | |- ( ( F ` w ) = u -> ( ( F ` w ) = ( F ` v ) <-> u = ( F ` v ) ) ) |
|
| 88 | breq2 | |- ( ( F ` w ) = u -> ( ( F ` v ) S ( F ` w ) <-> ( F ` v ) S u ) ) |
|
| 89 | 86 87 88 | 3orbi123d | |- ( ( F ` w ) = u -> ( ( ( F ` w ) S ( F ` v ) \/ ( F ` w ) = ( F ` v ) \/ ( F ` v ) S ( F ` w ) ) <-> ( u S ( F ` v ) \/ u = ( F ` v ) \/ ( F ` v ) S u ) ) ) |
| 90 | 89 | ralbidv | |- ( ( F ` w ) = u -> ( A. v e. A ( ( F ` w ) S ( F ` v ) \/ ( F ` w ) = ( F ` v ) \/ ( F ` v ) S ( F ` w ) ) <-> A. v e. A ( u S ( F ` v ) \/ u = ( F ` v ) \/ ( F ` v ) S u ) ) ) |
| 91 | 90 | cbvfo | |- ( F : A -onto-> B -> ( A. w e. A A. v e. A ( ( F ` w ) S ( F ` v ) \/ ( F ` w ) = ( F ` v ) \/ ( F ` v ) S ( F ` w ) ) <-> A. u e. B A. v e. A ( u S ( F ` v ) \/ u = ( F ` v ) \/ ( F ` v ) S u ) ) ) |
| 92 | breq2 | |- ( ( F ` v ) = f -> ( u S ( F ` v ) <-> u S f ) ) |
|
| 93 | eqeq2 | |- ( ( F ` v ) = f -> ( u = ( F ` v ) <-> u = f ) ) |
|
| 94 | breq1 | |- ( ( F ` v ) = f -> ( ( F ` v ) S u <-> f S u ) ) |
|
| 95 | 92 93 94 | 3orbi123d | |- ( ( F ` v ) = f -> ( ( u S ( F ` v ) \/ u = ( F ` v ) \/ ( F ` v ) S u ) <-> ( u S f \/ u = f \/ f S u ) ) ) |
| 96 | 95 | cbvfo | |- ( F : A -onto-> B -> ( A. v e. A ( u S ( F ` v ) \/ u = ( F ` v ) \/ ( F ` v ) S u ) <-> A. f e. B ( u S f \/ u = f \/ f S u ) ) ) |
| 97 | 96 | ralbidv | |- ( F : A -onto-> B -> ( A. u e. B A. v e. A ( u S ( F ` v ) \/ u = ( F ` v ) \/ ( F ` v ) S u ) <-> A. u e. B A. f e. B ( u S f \/ u = f \/ f S u ) ) ) |
| 98 | 91 97 | bitrd | |- ( F : A -onto-> B -> ( A. w e. A A. v e. A ( ( F ` w ) S ( F ` v ) \/ ( F ` w ) = ( F ` v ) \/ ( F ` v ) S ( F ` w ) ) <-> A. u e. B A. f e. B ( u S f \/ u = f \/ f S u ) ) ) |
| 99 | 85 98 | sylan9bb | |- ( ( F : A -1-1-> B /\ F : A -onto-> B ) -> ( A. w e. A A. v e. A ( w R v \/ w = v \/ v R w ) <-> A. u e. B A. f e. B ( u S f \/ u = f \/ f S u ) ) ) |
| 100 | 74 99 | sylbi | |- ( F : A -1-1-onto-> B -> ( A. w e. A A. v e. A ( w R v \/ w = v \/ v R w ) <-> A. u e. B A. f e. B ( u S f \/ u = f \/ f S u ) ) ) |
| 101 | 100 | biimprd | |- ( F : A -1-1-onto-> B -> ( A. u e. B A. f e. B ( u S f \/ u = f \/ f S u ) -> A. w e. A A. v e. A ( w R v \/ w = v \/ v R w ) ) ) |
| 102 | 73 101 | anim12d | |- ( F : A -1-1-onto-> B -> ( ( S Fr B /\ A. u e. B A. f e. B ( u S f \/ u = f \/ f S u ) ) -> ( R Fr A /\ A. w e. A A. v e. A ( w R v \/ w = v \/ v R w ) ) ) ) |
| 103 | dfwe2 | |- ( S We B <-> ( S Fr B /\ A. u e. B A. f e. B ( u S f \/ u = f \/ f S u ) ) ) |
|
| 104 | dfwe2 | |- ( R We A <-> ( R Fr A /\ A. w e. A A. v e. A ( w R v \/ w = v \/ v R w ) ) ) |
|
| 105 | 102 103 104 | 3imtr4g | |- ( F : A -1-1-onto-> B -> ( S We B -> R We A ) ) |