This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exponentiation is a monoid homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | expmhm.1 | ⊢ 𝑁 = ( ℂfld ↾s ℕ0 ) | |
| expmhm.2 | ⊢ 𝑀 = ( mulGrp ‘ ℂfld ) | ||
| Assertion | expmhm | ⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ∈ ( 𝑁 MndHom 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expmhm.1 | ⊢ 𝑁 = ( ℂfld ↾s ℕ0 ) | |
| 2 | expmhm.2 | ⊢ 𝑀 = ( mulGrp ‘ ℂfld ) | |
| 3 | expcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑥 ) ∈ ℂ ) | |
| 4 | 3 | fmpttd | ⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) : ℕ0 ⟶ ℂ ) |
| 5 | expadd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑦 + 𝑧 ) ) = ( ( 𝐴 ↑ 𝑦 ) · ( 𝐴 ↑ 𝑧 ) ) ) | |
| 6 | 5 | 3expb | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) ) → ( 𝐴 ↑ ( 𝑦 + 𝑧 ) ) = ( ( 𝐴 ↑ 𝑦 ) · ( 𝐴 ↑ 𝑧 ) ) ) |
| 7 | nn0addcl | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) → ( 𝑦 + 𝑧 ) ∈ ℕ0 ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) ) → ( 𝑦 + 𝑧 ) ∈ ℕ0 ) |
| 9 | oveq2 | ⊢ ( 𝑥 = ( 𝑦 + 𝑧 ) → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ ( 𝑦 + 𝑧 ) ) ) | |
| 10 | eqid | ⊢ ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) = ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) | |
| 11 | ovex | ⊢ ( 𝐴 ↑ ( 𝑦 + 𝑧 ) ) ∈ V | |
| 12 | 9 10 11 | fvmpt | ⊢ ( ( 𝑦 + 𝑧 ) ∈ ℕ0 → ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ ( 𝑦 + 𝑧 ) ) = ( 𝐴 ↑ ( 𝑦 + 𝑧 ) ) ) |
| 13 | 8 12 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) ) → ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ ( 𝑦 + 𝑧 ) ) = ( 𝐴 ↑ ( 𝑦 + 𝑧 ) ) ) |
| 14 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 𝑦 ) ) | |
| 15 | ovex | ⊢ ( 𝐴 ↑ 𝑦 ) ∈ V | |
| 16 | 14 10 15 | fvmpt | ⊢ ( 𝑦 ∈ ℕ0 → ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑦 ) = ( 𝐴 ↑ 𝑦 ) ) |
| 17 | oveq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 𝑧 ) ) | |
| 18 | ovex | ⊢ ( 𝐴 ↑ 𝑧 ) ∈ V | |
| 19 | 17 10 18 | fvmpt | ⊢ ( 𝑧 ∈ ℕ0 → ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑧 ) = ( 𝐴 ↑ 𝑧 ) ) |
| 20 | 16 19 | oveqan12d | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) → ( ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑦 ) · ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑧 ) ) = ( ( 𝐴 ↑ 𝑦 ) · ( 𝐴 ↑ 𝑧 ) ) ) |
| 21 | 20 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) ) → ( ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑦 ) · ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑧 ) ) = ( ( 𝐴 ↑ 𝑦 ) · ( 𝐴 ↑ 𝑧 ) ) ) |
| 22 | 6 13 21 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) ) → ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ ( 𝑦 + 𝑧 ) ) = ( ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑦 ) · ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑧 ) ) ) |
| 23 | 22 | ralrimivva | ⊢ ( 𝐴 ∈ ℂ → ∀ 𝑦 ∈ ℕ0 ∀ 𝑧 ∈ ℕ0 ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ ( 𝑦 + 𝑧 ) ) = ( ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑦 ) · ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑧 ) ) ) |
| 24 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 25 | oveq2 | ⊢ ( 𝑥 = 0 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 0 ) ) | |
| 26 | ovex | ⊢ ( 𝐴 ↑ 0 ) ∈ V | |
| 27 | 25 10 26 | fvmpt | ⊢ ( 0 ∈ ℕ0 → ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 0 ) = ( 𝐴 ↑ 0 ) ) |
| 28 | 24 27 | ax-mp | ⊢ ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 0 ) = ( 𝐴 ↑ 0 ) |
| 29 | exp0 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 0 ) = 1 ) | |
| 30 | 28 29 | eqtrid | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 0 ) = 1 ) |
| 31 | nn0subm | ⊢ ℕ0 ∈ ( SubMnd ‘ ℂfld ) | |
| 32 | 1 | submmnd | ⊢ ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) → 𝑁 ∈ Mnd ) |
| 33 | 31 32 | ax-mp | ⊢ 𝑁 ∈ Mnd |
| 34 | cnring | ⊢ ℂfld ∈ Ring | |
| 35 | 2 | ringmgp | ⊢ ( ℂfld ∈ Ring → 𝑀 ∈ Mnd ) |
| 36 | 34 35 | ax-mp | ⊢ 𝑀 ∈ Mnd |
| 37 | 33 36 | pm3.2i | ⊢ ( 𝑁 ∈ Mnd ∧ 𝑀 ∈ Mnd ) |
| 38 | 1 | submbas | ⊢ ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) → ℕ0 = ( Base ‘ 𝑁 ) ) |
| 39 | 31 38 | ax-mp | ⊢ ℕ0 = ( Base ‘ 𝑁 ) |
| 40 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 41 | 2 40 | mgpbas | ⊢ ℂ = ( Base ‘ 𝑀 ) |
| 42 | cnfldadd | ⊢ + = ( +g ‘ ℂfld ) | |
| 43 | 1 42 | ressplusg | ⊢ ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) → + = ( +g ‘ 𝑁 ) ) |
| 44 | 31 43 | ax-mp | ⊢ + = ( +g ‘ 𝑁 ) |
| 45 | cnfldmul | ⊢ · = ( .r ‘ ℂfld ) | |
| 46 | 2 45 | mgpplusg | ⊢ · = ( +g ‘ 𝑀 ) |
| 47 | cnfld0 | ⊢ 0 = ( 0g ‘ ℂfld ) | |
| 48 | 1 47 | subm0 | ⊢ ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) → 0 = ( 0g ‘ 𝑁 ) ) |
| 49 | 31 48 | ax-mp | ⊢ 0 = ( 0g ‘ 𝑁 ) |
| 50 | cnfld1 | ⊢ 1 = ( 1r ‘ ℂfld ) | |
| 51 | 2 50 | ringidval | ⊢ 1 = ( 0g ‘ 𝑀 ) |
| 52 | 39 41 44 46 49 51 | ismhm | ⊢ ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ∈ ( 𝑁 MndHom 𝑀 ) ↔ ( ( 𝑁 ∈ Mnd ∧ 𝑀 ∈ Mnd ) ∧ ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) : ℕ0 ⟶ ℂ ∧ ∀ 𝑦 ∈ ℕ0 ∀ 𝑧 ∈ ℕ0 ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ ( 𝑦 + 𝑧 ) ) = ( ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑦 ) · ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑧 ) ) ∧ ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 0 ) = 1 ) ) ) |
| 53 | 37 52 | mpbiran | ⊢ ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ∈ ( 𝑁 MndHom 𝑀 ) ↔ ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) : ℕ0 ⟶ ℂ ∧ ∀ 𝑦 ∈ ℕ0 ∀ 𝑧 ∈ ℕ0 ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ ( 𝑦 + 𝑧 ) ) = ( ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑦 ) · ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑧 ) ) ∧ ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 0 ) = 1 ) ) |
| 54 | 4 23 30 53 | syl3anbrc | ⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ∈ ( 𝑁 MndHom 𝑀 ) ) |