This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exponentiation is a monoid homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | expmhm.1 | |- N = ( CCfld |`s NN0 ) |
|
| expmhm.2 | |- M = ( mulGrp ` CCfld ) |
||
| Assertion | expmhm | |- ( A e. CC -> ( x e. NN0 |-> ( A ^ x ) ) e. ( N MndHom M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expmhm.1 | |- N = ( CCfld |`s NN0 ) |
|
| 2 | expmhm.2 | |- M = ( mulGrp ` CCfld ) |
|
| 3 | expcl | |- ( ( A e. CC /\ x e. NN0 ) -> ( A ^ x ) e. CC ) |
|
| 4 | 3 | fmpttd | |- ( A e. CC -> ( x e. NN0 |-> ( A ^ x ) ) : NN0 --> CC ) |
| 5 | expadd | |- ( ( A e. CC /\ y e. NN0 /\ z e. NN0 ) -> ( A ^ ( y + z ) ) = ( ( A ^ y ) x. ( A ^ z ) ) ) |
|
| 6 | 5 | 3expb | |- ( ( A e. CC /\ ( y e. NN0 /\ z e. NN0 ) ) -> ( A ^ ( y + z ) ) = ( ( A ^ y ) x. ( A ^ z ) ) ) |
| 7 | nn0addcl | |- ( ( y e. NN0 /\ z e. NN0 ) -> ( y + z ) e. NN0 ) |
|
| 8 | 7 | adantl | |- ( ( A e. CC /\ ( y e. NN0 /\ z e. NN0 ) ) -> ( y + z ) e. NN0 ) |
| 9 | oveq2 | |- ( x = ( y + z ) -> ( A ^ x ) = ( A ^ ( y + z ) ) ) |
|
| 10 | eqid | |- ( x e. NN0 |-> ( A ^ x ) ) = ( x e. NN0 |-> ( A ^ x ) ) |
|
| 11 | ovex | |- ( A ^ ( y + z ) ) e. _V |
|
| 12 | 9 10 11 | fvmpt | |- ( ( y + z ) e. NN0 -> ( ( x e. NN0 |-> ( A ^ x ) ) ` ( y + z ) ) = ( A ^ ( y + z ) ) ) |
| 13 | 8 12 | syl | |- ( ( A e. CC /\ ( y e. NN0 /\ z e. NN0 ) ) -> ( ( x e. NN0 |-> ( A ^ x ) ) ` ( y + z ) ) = ( A ^ ( y + z ) ) ) |
| 14 | oveq2 | |- ( x = y -> ( A ^ x ) = ( A ^ y ) ) |
|
| 15 | ovex | |- ( A ^ y ) e. _V |
|
| 16 | 14 10 15 | fvmpt | |- ( y e. NN0 -> ( ( x e. NN0 |-> ( A ^ x ) ) ` y ) = ( A ^ y ) ) |
| 17 | oveq2 | |- ( x = z -> ( A ^ x ) = ( A ^ z ) ) |
|
| 18 | ovex | |- ( A ^ z ) e. _V |
|
| 19 | 17 10 18 | fvmpt | |- ( z e. NN0 -> ( ( x e. NN0 |-> ( A ^ x ) ) ` z ) = ( A ^ z ) ) |
| 20 | 16 19 | oveqan12d | |- ( ( y e. NN0 /\ z e. NN0 ) -> ( ( ( x e. NN0 |-> ( A ^ x ) ) ` y ) x. ( ( x e. NN0 |-> ( A ^ x ) ) ` z ) ) = ( ( A ^ y ) x. ( A ^ z ) ) ) |
| 21 | 20 | adantl | |- ( ( A e. CC /\ ( y e. NN0 /\ z e. NN0 ) ) -> ( ( ( x e. NN0 |-> ( A ^ x ) ) ` y ) x. ( ( x e. NN0 |-> ( A ^ x ) ) ` z ) ) = ( ( A ^ y ) x. ( A ^ z ) ) ) |
| 22 | 6 13 21 | 3eqtr4d | |- ( ( A e. CC /\ ( y e. NN0 /\ z e. NN0 ) ) -> ( ( x e. NN0 |-> ( A ^ x ) ) ` ( y + z ) ) = ( ( ( x e. NN0 |-> ( A ^ x ) ) ` y ) x. ( ( x e. NN0 |-> ( A ^ x ) ) ` z ) ) ) |
| 23 | 22 | ralrimivva | |- ( A e. CC -> A. y e. NN0 A. z e. NN0 ( ( x e. NN0 |-> ( A ^ x ) ) ` ( y + z ) ) = ( ( ( x e. NN0 |-> ( A ^ x ) ) ` y ) x. ( ( x e. NN0 |-> ( A ^ x ) ) ` z ) ) ) |
| 24 | 0nn0 | |- 0 e. NN0 |
|
| 25 | oveq2 | |- ( x = 0 -> ( A ^ x ) = ( A ^ 0 ) ) |
|
| 26 | ovex | |- ( A ^ 0 ) e. _V |
|
| 27 | 25 10 26 | fvmpt | |- ( 0 e. NN0 -> ( ( x e. NN0 |-> ( A ^ x ) ) ` 0 ) = ( A ^ 0 ) ) |
| 28 | 24 27 | ax-mp | |- ( ( x e. NN0 |-> ( A ^ x ) ) ` 0 ) = ( A ^ 0 ) |
| 29 | exp0 | |- ( A e. CC -> ( A ^ 0 ) = 1 ) |
|
| 30 | 28 29 | eqtrid | |- ( A e. CC -> ( ( x e. NN0 |-> ( A ^ x ) ) ` 0 ) = 1 ) |
| 31 | nn0subm | |- NN0 e. ( SubMnd ` CCfld ) |
|
| 32 | 1 | submmnd | |- ( NN0 e. ( SubMnd ` CCfld ) -> N e. Mnd ) |
| 33 | 31 32 | ax-mp | |- N e. Mnd |
| 34 | cnring | |- CCfld e. Ring |
|
| 35 | 2 | ringmgp | |- ( CCfld e. Ring -> M e. Mnd ) |
| 36 | 34 35 | ax-mp | |- M e. Mnd |
| 37 | 33 36 | pm3.2i | |- ( N e. Mnd /\ M e. Mnd ) |
| 38 | 1 | submbas | |- ( NN0 e. ( SubMnd ` CCfld ) -> NN0 = ( Base ` N ) ) |
| 39 | 31 38 | ax-mp | |- NN0 = ( Base ` N ) |
| 40 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 41 | 2 40 | mgpbas | |- CC = ( Base ` M ) |
| 42 | cnfldadd | |- + = ( +g ` CCfld ) |
|
| 43 | 1 42 | ressplusg | |- ( NN0 e. ( SubMnd ` CCfld ) -> + = ( +g ` N ) ) |
| 44 | 31 43 | ax-mp | |- + = ( +g ` N ) |
| 45 | cnfldmul | |- x. = ( .r ` CCfld ) |
|
| 46 | 2 45 | mgpplusg | |- x. = ( +g ` M ) |
| 47 | cnfld0 | |- 0 = ( 0g ` CCfld ) |
|
| 48 | 1 47 | subm0 | |- ( NN0 e. ( SubMnd ` CCfld ) -> 0 = ( 0g ` N ) ) |
| 49 | 31 48 | ax-mp | |- 0 = ( 0g ` N ) |
| 50 | cnfld1 | |- 1 = ( 1r ` CCfld ) |
|
| 51 | 2 50 | ringidval | |- 1 = ( 0g ` M ) |
| 52 | 39 41 44 46 49 51 | ismhm | |- ( ( x e. NN0 |-> ( A ^ x ) ) e. ( N MndHom M ) <-> ( ( N e. Mnd /\ M e. Mnd ) /\ ( ( x e. NN0 |-> ( A ^ x ) ) : NN0 --> CC /\ A. y e. NN0 A. z e. NN0 ( ( x e. NN0 |-> ( A ^ x ) ) ` ( y + z ) ) = ( ( ( x e. NN0 |-> ( A ^ x ) ) ` y ) x. ( ( x e. NN0 |-> ( A ^ x ) ) ` z ) ) /\ ( ( x e. NN0 |-> ( A ^ x ) ) ` 0 ) = 1 ) ) ) |
| 53 | 37 52 | mpbiran | |- ( ( x e. NN0 |-> ( A ^ x ) ) e. ( N MndHom M ) <-> ( ( x e. NN0 |-> ( A ^ x ) ) : NN0 --> CC /\ A. y e. NN0 A. z e. NN0 ( ( x e. NN0 |-> ( A ^ x ) ) ` ( y + z ) ) = ( ( ( x e. NN0 |-> ( A ^ x ) ) ` y ) x. ( ( x e. NN0 |-> ( A ^ x ) ) ` z ) ) /\ ( ( x e. NN0 |-> ( A ^ x ) ) ` 0 ) = 1 ) ) |
| 54 | 4 23 30 53 | syl3anbrc | |- ( A e. CC -> ( x e. NN0 |-> ( A ^ x ) ) e. ( N MndHom M ) ) |