This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Univariate polynomial evaluation for subrings maps the variable to the identity function. (Contributed by AV, 13-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evls1var.q | ⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) | |
| evls1var.x | ⊢ 𝑋 = ( var1 ‘ 𝑈 ) | ||
| evls1var.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | ||
| evls1var.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| evls1var.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | ||
| evls1var.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | ||
| Assertion | evls1var | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝑋 ) = ( I ↾ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1var.q | ⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) | |
| 2 | evls1var.x | ⊢ 𝑋 = ( var1 ‘ 𝑈 ) | |
| 3 | evls1var.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | |
| 4 | evls1var.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 5 | evls1var.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | |
| 6 | evls1var.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | |
| 7 | eqid | ⊢ ( var1 ‘ 𝑆 ) = ( var1 ‘ 𝑆 ) | |
| 8 | 7 6 3 | subrgvr1 | ⊢ ( 𝜑 → ( var1 ‘ 𝑆 ) = ( var1 ‘ 𝑈 ) ) |
| 9 | 2 8 | eqtr4id | ⊢ ( 𝜑 → 𝑋 = ( var1 ‘ 𝑆 ) ) |
| 10 | 9 | fveq2d | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝑋 ) = ( 𝑄 ‘ ( var1 ‘ 𝑆 ) ) ) |
| 11 | eqid | ⊢ ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) = ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) | |
| 12 | eqid | ⊢ ( 1o eval 𝑆 ) = ( 1o eval 𝑆 ) | |
| 13 | eqid | ⊢ ( 1o mVar 𝑈 ) = ( 1o mVar 𝑈 ) | |
| 14 | 1on | ⊢ 1o ∈ On | |
| 15 | 14 | a1i | ⊢ ( 𝜑 → 1o ∈ On ) |
| 16 | 0lt1o | ⊢ ∅ ∈ 1o | |
| 17 | 16 | a1i | ⊢ ( 𝜑 → ∅ ∈ 1o ) |
| 18 | 11 12 13 3 4 15 5 6 17 | evlsvarsrng | ⊢ ( 𝜑 → ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( ( 1o mVar 𝑈 ) ‘ ∅ ) ) = ( ( 1o eval 𝑆 ) ‘ ( ( 1o mVar 𝑈 ) ‘ ∅ ) ) ) |
| 19 | 7 | vr1val | ⊢ ( var1 ‘ 𝑆 ) = ( ( 1o mVar 𝑆 ) ‘ ∅ ) |
| 20 | eqid | ⊢ ( 1o mVar 𝑆 ) = ( 1o mVar 𝑆 ) | |
| 21 | 20 15 6 3 | subrgmvr | ⊢ ( 𝜑 → ( 1o mVar 𝑆 ) = ( 1o mVar 𝑈 ) ) |
| 22 | 21 | fveq1d | ⊢ ( 𝜑 → ( ( 1o mVar 𝑆 ) ‘ ∅ ) = ( ( 1o mVar 𝑈 ) ‘ ∅ ) ) |
| 23 | 19 22 | eqtrid | ⊢ ( 𝜑 → ( var1 ‘ 𝑆 ) = ( ( 1o mVar 𝑈 ) ‘ ∅ ) ) |
| 24 | 23 | fveq2d | ⊢ ( 𝜑 → ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( var1 ‘ 𝑆 ) ) = ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( ( 1o mVar 𝑈 ) ‘ ∅ ) ) ) |
| 25 | 23 | fveq2d | ⊢ ( 𝜑 → ( ( 1o eval 𝑆 ) ‘ ( var1 ‘ 𝑆 ) ) = ( ( 1o eval 𝑆 ) ‘ ( ( 1o mVar 𝑈 ) ‘ ∅ ) ) ) |
| 26 | 18 24 25 | 3eqtr4d | ⊢ ( 𝜑 → ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( var1 ‘ 𝑆 ) ) = ( ( 1o eval 𝑆 ) ‘ ( var1 ‘ 𝑆 ) ) ) |
| 27 | 26 | coeq1d | ⊢ ( 𝜑 → ( ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( var1 ‘ 𝑆 ) ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) = ( ( ( 1o eval 𝑆 ) ‘ ( var1 ‘ 𝑆 ) ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
| 28 | eqid | ⊢ ( Poly1 ‘ 𝑈 ) = ( Poly1 ‘ 𝑈 ) | |
| 29 | eqid | ⊢ ( Poly1 ‘ ( 𝑆 ↾s 𝑅 ) ) = ( Poly1 ‘ ( 𝑆 ↾s 𝑅 ) ) | |
| 30 | 3 | fveq2i | ⊢ ( Poly1 ‘ 𝑈 ) = ( Poly1 ‘ ( 𝑆 ↾s 𝑅 ) ) |
| 31 | 30 | fveq2i | ⊢ ( Base ‘ ( Poly1 ‘ 𝑈 ) ) = ( Base ‘ ( Poly1 ‘ ( 𝑆 ↾s 𝑅 ) ) ) |
| 32 | 29 31 | ply1bas | ⊢ ( Base ‘ ( Poly1 ‘ 𝑈 ) ) = ( Base ‘ ( 1o mPoly ( 𝑆 ↾s 𝑅 ) ) ) |
| 33 | 32 | eqcomi | ⊢ ( Base ‘ ( 1o mPoly ( 𝑆 ↾s 𝑅 ) ) ) = ( Base ‘ ( Poly1 ‘ 𝑈 ) ) |
| 34 | 7 6 3 28 33 | subrgvr1cl | ⊢ ( 𝜑 → ( var1 ‘ 𝑆 ) ∈ ( Base ‘ ( 1o mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) |
| 35 | eqid | ⊢ ( 1o evalSub 𝑆 ) = ( 1o evalSub 𝑆 ) | |
| 36 | eqid | ⊢ ( 1o mPoly ( 𝑆 ↾s 𝑅 ) ) = ( 1o mPoly ( 𝑆 ↾s 𝑅 ) ) | |
| 37 | eqid | ⊢ ( Base ‘ ( 1o mPoly ( 𝑆 ↾s 𝑅 ) ) ) = ( Base ‘ ( 1o mPoly ( 𝑆 ↾s 𝑅 ) ) ) | |
| 38 | 1 35 4 36 37 | evls1val | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ∧ ( var1 ‘ 𝑆 ) ∈ ( Base ‘ ( 1o mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) → ( 𝑄 ‘ ( var1 ‘ 𝑆 ) ) = ( ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( var1 ‘ 𝑆 ) ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
| 39 | 5 6 34 38 | syl3anc | ⊢ ( 𝜑 → ( 𝑄 ‘ ( var1 ‘ 𝑆 ) ) = ( ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( var1 ‘ 𝑆 ) ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
| 40 | crngring | ⊢ ( 𝑆 ∈ CRing → 𝑆 ∈ Ring ) | |
| 41 | eqid | ⊢ ( Poly1 ‘ 𝑆 ) = ( Poly1 ‘ 𝑆 ) | |
| 42 | eqid | ⊢ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) = ( Base ‘ ( Poly1 ‘ 𝑆 ) ) | |
| 43 | 41 42 | ply1bas | ⊢ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) = ( Base ‘ ( 1o mPoly 𝑆 ) ) |
| 44 | 43 | eqcomi | ⊢ ( Base ‘ ( 1o mPoly 𝑆 ) ) = ( Base ‘ ( Poly1 ‘ 𝑆 ) ) |
| 45 | 7 41 44 | vr1cl | ⊢ ( 𝑆 ∈ Ring → ( var1 ‘ 𝑆 ) ∈ ( Base ‘ ( 1o mPoly 𝑆 ) ) ) |
| 46 | 5 40 45 | 3syl | ⊢ ( 𝜑 → ( var1 ‘ 𝑆 ) ∈ ( Base ‘ ( 1o mPoly 𝑆 ) ) ) |
| 47 | eqid | ⊢ ( eval1 ‘ 𝑆 ) = ( eval1 ‘ 𝑆 ) | |
| 48 | eqid | ⊢ ( 1o mPoly 𝑆 ) = ( 1o mPoly 𝑆 ) | |
| 49 | eqid | ⊢ ( Base ‘ ( 1o mPoly 𝑆 ) ) = ( Base ‘ ( 1o mPoly 𝑆 ) ) | |
| 50 | 47 12 4 48 49 | evl1val | ⊢ ( ( 𝑆 ∈ CRing ∧ ( var1 ‘ 𝑆 ) ∈ ( Base ‘ ( 1o mPoly 𝑆 ) ) ) → ( ( eval1 ‘ 𝑆 ) ‘ ( var1 ‘ 𝑆 ) ) = ( ( ( 1o eval 𝑆 ) ‘ ( var1 ‘ 𝑆 ) ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
| 51 | 5 46 50 | syl2anc | ⊢ ( 𝜑 → ( ( eval1 ‘ 𝑆 ) ‘ ( var1 ‘ 𝑆 ) ) = ( ( ( 1o eval 𝑆 ) ‘ ( var1 ‘ 𝑆 ) ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
| 52 | 27 39 51 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝑄 ‘ ( var1 ‘ 𝑆 ) ) = ( ( eval1 ‘ 𝑆 ) ‘ ( var1 ‘ 𝑆 ) ) ) |
| 53 | 47 7 4 | evl1var | ⊢ ( 𝑆 ∈ CRing → ( ( eval1 ‘ 𝑆 ) ‘ ( var1 ‘ 𝑆 ) ) = ( I ↾ 𝐵 ) ) |
| 54 | 5 53 | syl | ⊢ ( 𝜑 → ( ( eval1 ‘ 𝑆 ) ‘ ( var1 ‘ 𝑆 ) ) = ( I ↾ 𝐵 ) ) |
| 55 | 10 52 54 | 3eqtrd | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝑋 ) = ( I ↾ 𝐵 ) ) |