This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The evaluation of a scalar of a subring yields the same result as evaluated as a scalar over the ring itself. (Contributed by AV, 13-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evls1scasrng.q | ⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) | |
| evls1scasrng.o | ⊢ 𝑂 = ( eval1 ‘ 𝑆 ) | ||
| evls1scasrng.w | ⊢ 𝑊 = ( Poly1 ‘ 𝑈 ) | ||
| evls1scasrng.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | ||
| evls1scasrng.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑆 ) | ||
| evls1scasrng.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| evls1scasrng.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | ||
| evls1scasrng.c | ⊢ 𝐶 = ( algSc ‘ 𝑃 ) | ||
| evls1scasrng.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | ||
| evls1scasrng.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | ||
| evls1scasrng.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑅 ) | ||
| Assertion | evls1scasrng | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) = ( 𝑂 ‘ ( 𝐶 ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1scasrng.q | ⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) | |
| 2 | evls1scasrng.o | ⊢ 𝑂 = ( eval1 ‘ 𝑆 ) | |
| 3 | evls1scasrng.w | ⊢ 𝑊 = ( Poly1 ‘ 𝑈 ) | |
| 4 | evls1scasrng.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | |
| 5 | evls1scasrng.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑆 ) | |
| 6 | evls1scasrng.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 7 | evls1scasrng.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
| 8 | evls1scasrng.c | ⊢ 𝐶 = ( algSc ‘ 𝑃 ) | |
| 9 | evls1scasrng.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | |
| 10 | evls1scasrng.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | |
| 11 | evls1scasrng.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑅 ) | |
| 12 | 6 | ressid | ⊢ ( 𝑆 ∈ CRing → ( 𝑆 ↾s 𝐵 ) = 𝑆 ) |
| 13 | 12 | eqcomd | ⊢ ( 𝑆 ∈ CRing → 𝑆 = ( 𝑆 ↾s 𝐵 ) ) |
| 14 | 9 13 | syl | ⊢ ( 𝜑 → 𝑆 = ( 𝑆 ↾s 𝐵 ) ) |
| 15 | 14 | fveq2d | ⊢ ( 𝜑 → ( Poly1 ‘ 𝑆 ) = ( Poly1 ‘ ( 𝑆 ↾s 𝐵 ) ) ) |
| 16 | 5 15 | eqtrid | ⊢ ( 𝜑 → 𝑃 = ( Poly1 ‘ ( 𝑆 ↾s 𝐵 ) ) ) |
| 17 | 16 | fveq2d | ⊢ ( 𝜑 → ( algSc ‘ 𝑃 ) = ( algSc ‘ ( Poly1 ‘ ( 𝑆 ↾s 𝐵 ) ) ) ) |
| 18 | 8 17 | eqtrid | ⊢ ( 𝜑 → 𝐶 = ( algSc ‘ ( Poly1 ‘ ( 𝑆 ↾s 𝐵 ) ) ) ) |
| 19 | 18 | fveq1d | ⊢ ( 𝜑 → ( 𝐶 ‘ 𝑋 ) = ( ( algSc ‘ ( Poly1 ‘ ( 𝑆 ↾s 𝐵 ) ) ) ‘ 𝑋 ) ) |
| 20 | 19 | fveq2d | ⊢ ( 𝜑 → ( ( 𝑆 evalSub1 𝐵 ) ‘ ( 𝐶 ‘ 𝑋 ) ) = ( ( 𝑆 evalSub1 𝐵 ) ‘ ( ( algSc ‘ ( Poly1 ‘ ( 𝑆 ↾s 𝐵 ) ) ) ‘ 𝑋 ) ) ) |
| 21 | eqid | ⊢ ( 𝑆 evalSub1 𝐵 ) = ( 𝑆 evalSub1 𝐵 ) | |
| 22 | eqid | ⊢ ( Poly1 ‘ ( 𝑆 ↾s 𝐵 ) ) = ( Poly1 ‘ ( 𝑆 ↾s 𝐵 ) ) | |
| 23 | eqid | ⊢ ( 𝑆 ↾s 𝐵 ) = ( 𝑆 ↾s 𝐵 ) | |
| 24 | eqid | ⊢ ( algSc ‘ ( Poly1 ‘ ( 𝑆 ↾s 𝐵 ) ) ) = ( algSc ‘ ( Poly1 ‘ ( 𝑆 ↾s 𝐵 ) ) ) | |
| 25 | crngring | ⊢ ( 𝑆 ∈ CRing → 𝑆 ∈ Ring ) | |
| 26 | 6 | subrgid | ⊢ ( 𝑆 ∈ Ring → 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) |
| 27 | 9 25 26 | 3syl | ⊢ ( 𝜑 → 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) |
| 28 | 6 | subrgss | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ⊆ 𝐵 ) |
| 29 | 10 28 | syl | ⊢ ( 𝜑 → 𝑅 ⊆ 𝐵 ) |
| 30 | 29 11 | sseldd | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 31 | 21 22 23 6 24 9 27 30 | evls1sca | ⊢ ( 𝜑 → ( ( 𝑆 evalSub1 𝐵 ) ‘ ( ( algSc ‘ ( Poly1 ‘ ( 𝑆 ↾s 𝐵 ) ) ) ‘ 𝑋 ) ) = ( 𝐵 × { 𝑋 } ) ) |
| 32 | 20 31 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑆 evalSub1 𝐵 ) ‘ ( 𝐶 ‘ 𝑋 ) ) = ( 𝐵 × { 𝑋 } ) ) |
| 33 | 2 6 | evl1fval1 | ⊢ 𝑂 = ( 𝑆 evalSub1 𝐵 ) |
| 34 | 33 | a1i | ⊢ ( 𝜑 → 𝑂 = ( 𝑆 evalSub1 𝐵 ) ) |
| 35 | 34 | fveq1d | ⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐶 ‘ 𝑋 ) ) = ( ( 𝑆 evalSub1 𝐵 ) ‘ ( 𝐶 ‘ 𝑋 ) ) ) |
| 36 | 1 3 4 6 7 9 10 11 | evls1sca | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) = ( 𝐵 × { 𝑋 } ) ) |
| 37 | 32 35 36 | 3eqtr4rd | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) = ( 𝑂 ‘ ( 𝐶 ‘ 𝑋 ) ) ) |