This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The variables in a polynomial algebra are contained in every subring algebra. (Contributed by Mario Carneiro, 5-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subrgvr1.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | |
| subrgvr1.r | ⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) | ||
| subrgvr1.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | ||
| subrgvr1cl.u | ⊢ 𝑈 = ( Poly1 ‘ 𝐻 ) | ||
| subrgvr1cl.b | ⊢ 𝐵 = ( Base ‘ 𝑈 ) | ||
| Assertion | subrgvr1cl | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgvr1.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | |
| 2 | subrgvr1.r | ⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) | |
| 3 | subrgvr1.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | |
| 4 | subrgvr1cl.u | ⊢ 𝑈 = ( Poly1 ‘ 𝐻 ) | |
| 5 | subrgvr1cl.b | ⊢ 𝐵 = ( Base ‘ 𝑈 ) | |
| 6 | 1 | vr1val | ⊢ 𝑋 = ( ( 1o mVar 𝑅 ) ‘ ∅ ) |
| 7 | eqid | ⊢ ( 1o mVar 𝑅 ) = ( 1o mVar 𝑅 ) | |
| 8 | 1on | ⊢ 1o ∈ On | |
| 9 | 8 | a1i | ⊢ ( 𝜑 → 1o ∈ On ) |
| 10 | eqid | ⊢ ( 1o mPoly 𝐻 ) = ( 1o mPoly 𝐻 ) | |
| 11 | 4 5 | ply1bas | ⊢ 𝐵 = ( Base ‘ ( 1o mPoly 𝐻 ) ) |
| 12 | 7 9 2 3 10 11 | subrgmvrf | ⊢ ( 𝜑 → ( 1o mVar 𝑅 ) : 1o ⟶ 𝐵 ) |
| 13 | 0lt1o | ⊢ ∅ ∈ 1o | |
| 14 | ffvelcdm | ⊢ ( ( ( 1o mVar 𝑅 ) : 1o ⟶ 𝐵 ∧ ∅ ∈ 1o ) → ( ( 1o mVar 𝑅 ) ‘ ∅ ) ∈ 𝐵 ) | |
| 15 | 12 13 14 | sylancl | ⊢ ( 𝜑 → ( ( 1o mVar 𝑅 ) ‘ ∅ ) ∈ 𝐵 ) |
| 16 | 6 15 | eqeltrid | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |