This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Univariate polynomial evaluation for subrings maps the variable to the identity function. (Contributed by AV, 13-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evls1var.q | |- Q = ( S evalSub1 R ) |
|
| evls1var.x | |- X = ( var1 ` U ) |
||
| evls1var.u | |- U = ( S |`s R ) |
||
| evls1var.b | |- B = ( Base ` S ) |
||
| evls1var.s | |- ( ph -> S e. CRing ) |
||
| evls1var.r | |- ( ph -> R e. ( SubRing ` S ) ) |
||
| Assertion | evls1var | |- ( ph -> ( Q ` X ) = ( _I |` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1var.q | |- Q = ( S evalSub1 R ) |
|
| 2 | evls1var.x | |- X = ( var1 ` U ) |
|
| 3 | evls1var.u | |- U = ( S |`s R ) |
|
| 4 | evls1var.b | |- B = ( Base ` S ) |
|
| 5 | evls1var.s | |- ( ph -> S e. CRing ) |
|
| 6 | evls1var.r | |- ( ph -> R e. ( SubRing ` S ) ) |
|
| 7 | eqid | |- ( var1 ` S ) = ( var1 ` S ) |
|
| 8 | 7 6 3 | subrgvr1 | |- ( ph -> ( var1 ` S ) = ( var1 ` U ) ) |
| 9 | 2 8 | eqtr4id | |- ( ph -> X = ( var1 ` S ) ) |
| 10 | 9 | fveq2d | |- ( ph -> ( Q ` X ) = ( Q ` ( var1 ` S ) ) ) |
| 11 | eqid | |- ( ( 1o evalSub S ) ` R ) = ( ( 1o evalSub S ) ` R ) |
|
| 12 | eqid | |- ( 1o eval S ) = ( 1o eval S ) |
|
| 13 | eqid | |- ( 1o mVar U ) = ( 1o mVar U ) |
|
| 14 | 1on | |- 1o e. On |
|
| 15 | 14 | a1i | |- ( ph -> 1o e. On ) |
| 16 | 0lt1o | |- (/) e. 1o |
|
| 17 | 16 | a1i | |- ( ph -> (/) e. 1o ) |
| 18 | 11 12 13 3 4 15 5 6 17 | evlsvarsrng | |- ( ph -> ( ( ( 1o evalSub S ) ` R ) ` ( ( 1o mVar U ) ` (/) ) ) = ( ( 1o eval S ) ` ( ( 1o mVar U ) ` (/) ) ) ) |
| 19 | 7 | vr1val | |- ( var1 ` S ) = ( ( 1o mVar S ) ` (/) ) |
| 20 | eqid | |- ( 1o mVar S ) = ( 1o mVar S ) |
|
| 21 | 20 15 6 3 | subrgmvr | |- ( ph -> ( 1o mVar S ) = ( 1o mVar U ) ) |
| 22 | 21 | fveq1d | |- ( ph -> ( ( 1o mVar S ) ` (/) ) = ( ( 1o mVar U ) ` (/) ) ) |
| 23 | 19 22 | eqtrid | |- ( ph -> ( var1 ` S ) = ( ( 1o mVar U ) ` (/) ) ) |
| 24 | 23 | fveq2d | |- ( ph -> ( ( ( 1o evalSub S ) ` R ) ` ( var1 ` S ) ) = ( ( ( 1o evalSub S ) ` R ) ` ( ( 1o mVar U ) ` (/) ) ) ) |
| 25 | 23 | fveq2d | |- ( ph -> ( ( 1o eval S ) ` ( var1 ` S ) ) = ( ( 1o eval S ) ` ( ( 1o mVar U ) ` (/) ) ) ) |
| 26 | 18 24 25 | 3eqtr4d | |- ( ph -> ( ( ( 1o evalSub S ) ` R ) ` ( var1 ` S ) ) = ( ( 1o eval S ) ` ( var1 ` S ) ) ) |
| 27 | 26 | coeq1d | |- ( ph -> ( ( ( ( 1o evalSub S ) ` R ) ` ( var1 ` S ) ) o. ( y e. B |-> ( 1o X. { y } ) ) ) = ( ( ( 1o eval S ) ` ( var1 ` S ) ) o. ( y e. B |-> ( 1o X. { y } ) ) ) ) |
| 28 | eqid | |- ( Poly1 ` U ) = ( Poly1 ` U ) |
|
| 29 | eqid | |- ( Poly1 ` ( S |`s R ) ) = ( Poly1 ` ( S |`s R ) ) |
|
| 30 | 3 | fveq2i | |- ( Poly1 ` U ) = ( Poly1 ` ( S |`s R ) ) |
| 31 | 30 | fveq2i | |- ( Base ` ( Poly1 ` U ) ) = ( Base ` ( Poly1 ` ( S |`s R ) ) ) |
| 32 | 29 31 | ply1bas | |- ( Base ` ( Poly1 ` U ) ) = ( Base ` ( 1o mPoly ( S |`s R ) ) ) |
| 33 | 32 | eqcomi | |- ( Base ` ( 1o mPoly ( S |`s R ) ) ) = ( Base ` ( Poly1 ` U ) ) |
| 34 | 7 6 3 28 33 | subrgvr1cl | |- ( ph -> ( var1 ` S ) e. ( Base ` ( 1o mPoly ( S |`s R ) ) ) ) |
| 35 | eqid | |- ( 1o evalSub S ) = ( 1o evalSub S ) |
|
| 36 | eqid | |- ( 1o mPoly ( S |`s R ) ) = ( 1o mPoly ( S |`s R ) ) |
|
| 37 | eqid | |- ( Base ` ( 1o mPoly ( S |`s R ) ) ) = ( Base ` ( 1o mPoly ( S |`s R ) ) ) |
|
| 38 | 1 35 4 36 37 | evls1val | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) /\ ( var1 ` S ) e. ( Base ` ( 1o mPoly ( S |`s R ) ) ) ) -> ( Q ` ( var1 ` S ) ) = ( ( ( ( 1o evalSub S ) ` R ) ` ( var1 ` S ) ) o. ( y e. B |-> ( 1o X. { y } ) ) ) ) |
| 39 | 5 6 34 38 | syl3anc | |- ( ph -> ( Q ` ( var1 ` S ) ) = ( ( ( ( 1o evalSub S ) ` R ) ` ( var1 ` S ) ) o. ( y e. B |-> ( 1o X. { y } ) ) ) ) |
| 40 | crngring | |- ( S e. CRing -> S e. Ring ) |
|
| 41 | eqid | |- ( Poly1 ` S ) = ( Poly1 ` S ) |
|
| 42 | eqid | |- ( Base ` ( Poly1 ` S ) ) = ( Base ` ( Poly1 ` S ) ) |
|
| 43 | 41 42 | ply1bas | |- ( Base ` ( Poly1 ` S ) ) = ( Base ` ( 1o mPoly S ) ) |
| 44 | 43 | eqcomi | |- ( Base ` ( 1o mPoly S ) ) = ( Base ` ( Poly1 ` S ) ) |
| 45 | 7 41 44 | vr1cl | |- ( S e. Ring -> ( var1 ` S ) e. ( Base ` ( 1o mPoly S ) ) ) |
| 46 | 5 40 45 | 3syl | |- ( ph -> ( var1 ` S ) e. ( Base ` ( 1o mPoly S ) ) ) |
| 47 | eqid | |- ( eval1 ` S ) = ( eval1 ` S ) |
|
| 48 | eqid | |- ( 1o mPoly S ) = ( 1o mPoly S ) |
|
| 49 | eqid | |- ( Base ` ( 1o mPoly S ) ) = ( Base ` ( 1o mPoly S ) ) |
|
| 50 | 47 12 4 48 49 | evl1val | |- ( ( S e. CRing /\ ( var1 ` S ) e. ( Base ` ( 1o mPoly S ) ) ) -> ( ( eval1 ` S ) ` ( var1 ` S ) ) = ( ( ( 1o eval S ) ` ( var1 ` S ) ) o. ( y e. B |-> ( 1o X. { y } ) ) ) ) |
| 51 | 5 46 50 | syl2anc | |- ( ph -> ( ( eval1 ` S ) ` ( var1 ` S ) ) = ( ( ( 1o eval S ) ` ( var1 ` S ) ) o. ( y e. B |-> ( 1o X. { y } ) ) ) ) |
| 52 | 27 39 51 | 3eqtr4d | |- ( ph -> ( Q ` ( var1 ` S ) ) = ( ( eval1 ` S ) ` ( var1 ` S ) ) ) |
| 53 | 47 7 4 | evl1var | |- ( S e. CRing -> ( ( eval1 ` S ) ` ( var1 ` S ) ) = ( _I |` B ) ) |
| 54 | 5 53 | syl | |- ( ph -> ( ( eval1 ` S ) ` ( var1 ` S ) ) = ( _I |` B ) ) |
| 55 | 10 52 54 | 3eqtrd | |- ( ph -> ( Q ` X ) = ( _I |` B ) ) |