This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The variables in a subring polynomial algebra are the same as the original ring. (Contributed by Mario Carneiro, 5-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subrgvr1.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | |
| subrgvr1.r | ⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) | ||
| subrgvr1.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | ||
| Assertion | subrgvr1 | ⊢ ( 𝜑 → 𝑋 = ( var1 ‘ 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgvr1.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | |
| 2 | subrgvr1.r | ⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) | |
| 3 | subrgvr1.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | |
| 4 | eqid | ⊢ ( 1o mVar 𝑅 ) = ( 1o mVar 𝑅 ) | |
| 5 | 1on | ⊢ 1o ∈ On | |
| 6 | 5 | a1i | ⊢ ( 𝜑 → 1o ∈ On ) |
| 7 | 4 6 2 3 | subrgmvr | ⊢ ( 𝜑 → ( 1o mVar 𝑅 ) = ( 1o mVar 𝐻 ) ) |
| 8 | 7 | fveq1d | ⊢ ( 𝜑 → ( ( 1o mVar 𝑅 ) ‘ ∅ ) = ( ( 1o mVar 𝐻 ) ‘ ∅ ) ) |
| 9 | 1 | vr1val | ⊢ 𝑋 = ( ( 1o mVar 𝑅 ) ‘ ∅ ) |
| 10 | eqid | ⊢ ( var1 ‘ 𝐻 ) = ( var1 ‘ 𝐻 ) | |
| 11 | 10 | vr1val | ⊢ ( var1 ‘ 𝐻 ) = ( ( 1o mVar 𝐻 ) ‘ ∅ ) |
| 12 | 8 9 11 | 3eqtr4g | ⊢ ( 𝜑 → 𝑋 = ( var1 ‘ 𝐻 ) ) |