This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The evaluation of the variable of polynomials over subring yields the same result as evaluated as variable of the polynomials over the ring itself. (Contributed by AV, 12-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlsvarsrng.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| evlsvarsrng.o | ⊢ 𝑂 = ( 𝐼 eval 𝑆 ) | ||
| evlsvarsrng.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑈 ) | ||
| evlsvarsrng.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | ||
| evlsvarsrng.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| evlsvarsrng.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝐴 ) | ||
| evlsvarsrng.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | ||
| evlsvarsrng.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | ||
| evlsvarsrng.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) | ||
| Assertion | evlsvarsrng | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑉 ‘ 𝑋 ) ) = ( 𝑂 ‘ ( 𝑉 ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsvarsrng.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| 2 | evlsvarsrng.o | ⊢ 𝑂 = ( 𝐼 eval 𝑆 ) | |
| 3 | evlsvarsrng.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑈 ) | |
| 4 | evlsvarsrng.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | |
| 5 | evlsvarsrng.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 6 | evlsvarsrng.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝐴 ) | |
| 7 | evlsvarsrng.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | |
| 8 | evlsvarsrng.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | |
| 9 | evlsvarsrng.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) | |
| 10 | 1 3 4 5 6 7 8 9 | evlsvar | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑉 ‘ 𝑋 ) ) = ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑋 ) ) ) |
| 11 | 2 5 | evlval | ⊢ 𝑂 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐵 ) |
| 12 | 11 | a1i | ⊢ ( 𝜑 → 𝑂 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐵 ) ) |
| 13 | 12 | fveq1d | ⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝑉 ‘ 𝑋 ) ) = ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐵 ) ‘ ( 𝑉 ‘ 𝑋 ) ) ) |
| 14 | 3 | a1i | ⊢ ( 𝜑 → 𝑉 = ( 𝐼 mVar 𝑈 ) ) |
| 15 | eqid | ⊢ ( 𝐼 mVar 𝑆 ) = ( 𝐼 mVar 𝑆 ) | |
| 16 | 15 6 8 4 | subrgmvr | ⊢ ( 𝜑 → ( 𝐼 mVar 𝑆 ) = ( 𝐼 mVar 𝑈 ) ) |
| 17 | 5 | ressid | ⊢ ( 𝑆 ∈ CRing → ( 𝑆 ↾s 𝐵 ) = 𝑆 ) |
| 18 | 7 17 | syl | ⊢ ( 𝜑 → ( 𝑆 ↾s 𝐵 ) = 𝑆 ) |
| 19 | 18 | eqcomd | ⊢ ( 𝜑 → 𝑆 = ( 𝑆 ↾s 𝐵 ) ) |
| 20 | 19 | oveq2d | ⊢ ( 𝜑 → ( 𝐼 mVar 𝑆 ) = ( 𝐼 mVar ( 𝑆 ↾s 𝐵 ) ) ) |
| 21 | 14 16 20 | 3eqtr2d | ⊢ ( 𝜑 → 𝑉 = ( 𝐼 mVar ( 𝑆 ↾s 𝐵 ) ) ) |
| 22 | 21 | fveq1d | ⊢ ( 𝜑 → ( 𝑉 ‘ 𝑋 ) = ( ( 𝐼 mVar ( 𝑆 ↾s 𝐵 ) ) ‘ 𝑋 ) ) |
| 23 | 22 | fveq2d | ⊢ ( 𝜑 → ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐵 ) ‘ ( 𝑉 ‘ 𝑋 ) ) = ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐵 ) ‘ ( ( 𝐼 mVar ( 𝑆 ↾s 𝐵 ) ) ‘ 𝑋 ) ) ) |
| 24 | eqid | ⊢ ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐵 ) = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐵 ) | |
| 25 | eqid | ⊢ ( 𝐼 mVar ( 𝑆 ↾s 𝐵 ) ) = ( 𝐼 mVar ( 𝑆 ↾s 𝐵 ) ) | |
| 26 | eqid | ⊢ ( 𝑆 ↾s 𝐵 ) = ( 𝑆 ↾s 𝐵 ) | |
| 27 | crngring | ⊢ ( 𝑆 ∈ CRing → 𝑆 ∈ Ring ) | |
| 28 | 5 | subrgid | ⊢ ( 𝑆 ∈ Ring → 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) |
| 29 | 7 27 28 | 3syl | ⊢ ( 𝜑 → 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) |
| 30 | 24 25 26 5 6 7 29 9 | evlsvar | ⊢ ( 𝜑 → ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐵 ) ‘ ( ( 𝐼 mVar ( 𝑆 ↾s 𝐵 ) ) ‘ 𝑋 ) ) = ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑋 ) ) ) |
| 31 | 13 23 30 | 3eqtrrd | ⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑋 ) ) = ( 𝑂 ‘ ( 𝑉 ‘ 𝑋 ) ) ) |
| 32 | 10 31 | eqtrd | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑉 ‘ 𝑋 ) ) = ( 𝑂 ‘ ( 𝑉 ‘ 𝑋 ) ) ) |