This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The variables in a subring polynomial algebra are the same as the original ring. (Contributed by Mario Carneiro, 4-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subrgmvr.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) | |
| subrgmvr.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| subrgmvr.r | ⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) | ||
| subrgmvr.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | ||
| Assertion | subrgmvr | ⊢ ( 𝜑 → 𝑉 = ( 𝐼 mVar 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgmvr.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) | |
| 2 | subrgmvr.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 3 | subrgmvr.r | ⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) | |
| 4 | subrgmvr.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | |
| 5 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 6 | 4 5 | subrg1 | ⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝐻 ) ) |
| 7 | 3 6 | syl | ⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝐻 ) ) |
| 8 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 9 | 4 8 | subrg0 | ⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝐻 ) ) |
| 10 | 3 9 | syl | ⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝐻 ) ) |
| 11 | 7 10 | ifeq12d | ⊢ ( 𝜑 → if ( 𝑦 = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = if ( 𝑦 = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) , ( 1r ‘ 𝐻 ) , ( 0g ‘ 𝐻 ) ) ) |
| 12 | 11 | mpteq2dv | ⊢ ( 𝜑 → ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) = ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) , ( 1r ‘ 𝐻 ) , ( 0g ‘ 𝐻 ) ) ) ) |
| 13 | 12 | mpteq2dv | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) , ( 1r ‘ 𝐻 ) , ( 0g ‘ 𝐻 ) ) ) ) ) |
| 14 | eqid | ⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 15 | subrgrcl | ⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring ) | |
| 16 | 3 15 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 17 | 1 14 8 5 2 16 | mvrfval | ⊢ ( 𝜑 → 𝑉 = ( 𝑥 ∈ 𝐼 ↦ ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) |
| 18 | eqid | ⊢ ( 𝐼 mVar 𝐻 ) = ( 𝐼 mVar 𝐻 ) | |
| 19 | eqid | ⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) | |
| 20 | eqid | ⊢ ( 1r ‘ 𝐻 ) = ( 1r ‘ 𝐻 ) | |
| 21 | 4 | ovexi | ⊢ 𝐻 ∈ V |
| 22 | 21 | a1i | ⊢ ( 𝜑 → 𝐻 ∈ V ) |
| 23 | 18 14 19 20 2 22 | mvrfval | ⊢ ( 𝜑 → ( 𝐼 mVar 𝐻 ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) , ( 1r ‘ 𝐻 ) , ( 0g ‘ 𝐻 ) ) ) ) ) |
| 24 | 13 17 23 | 3eqtr4d | ⊢ ( 𝜑 → 𝑉 = ( 𝐼 mVar 𝐻 ) ) |