This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial evaluation maps the variable to the identity function. (Contributed by Mario Carneiro, 12-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evl1var.q | ⊢ 𝑂 = ( eval1 ‘ 𝑅 ) | |
| evl1var.v | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | ||
| evl1var.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| Assertion | evl1var | ⊢ ( 𝑅 ∈ CRing → ( 𝑂 ‘ 𝑋 ) = ( I ↾ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1var.q | ⊢ 𝑂 = ( eval1 ‘ 𝑅 ) | |
| 2 | evl1var.v | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | |
| 3 | evl1var.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 4 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 5 | eqid | ⊢ ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ 𝑅 ) | |
| 6 | eqid | ⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( Poly1 ‘ 𝑅 ) ) | |
| 7 | 2 5 6 | vr1cl | ⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
| 8 | 4 7 | syl | ⊢ ( 𝑅 ∈ CRing → 𝑋 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
| 9 | eqid | ⊢ ( 1o eval 𝑅 ) = ( 1o eval 𝑅 ) | |
| 10 | eqid | ⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) | |
| 11 | 5 6 | ply1bas | ⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
| 12 | 1 9 3 10 11 | evl1val | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( 𝑂 ‘ 𝑋 ) = ( ( ( 1o eval 𝑅 ) ‘ 𝑋 ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
| 13 | 8 12 | mpdan | ⊢ ( 𝑅 ∈ CRing → ( 𝑂 ‘ 𝑋 ) = ( ( ( 1o eval 𝑅 ) ‘ 𝑋 ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
| 14 | df1o2 | ⊢ 1o = { ∅ } | |
| 15 | 3 | fvexi | ⊢ 𝐵 ∈ V |
| 16 | 0ex | ⊢ ∅ ∈ V | |
| 17 | eqid | ⊢ ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) = ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) | |
| 18 | 14 15 16 17 | mapsncnv | ⊢ ◡ ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) = ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) |
| 19 | 18 | coeq2i | ⊢ ( ( ( 1o eval 𝑅 ) ‘ 𝑋 ) ∘ ◡ ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) ) = ( ( ( 1o eval 𝑅 ) ‘ 𝑋 ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) |
| 20 | 3 | ressid | ⊢ ( 𝑅 ∈ CRing → ( 𝑅 ↾s 𝐵 ) = 𝑅 ) |
| 21 | 20 | oveq2d | ⊢ ( 𝑅 ∈ CRing → ( 1o mVar ( 𝑅 ↾s 𝐵 ) ) = ( 1o mVar 𝑅 ) ) |
| 22 | 21 | fveq1d | ⊢ ( 𝑅 ∈ CRing → ( ( 1o mVar ( 𝑅 ↾s 𝐵 ) ) ‘ ∅ ) = ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) |
| 23 | 2 | vr1val | ⊢ 𝑋 = ( ( 1o mVar 𝑅 ) ‘ ∅ ) |
| 24 | 22 23 | eqtr4di | ⊢ ( 𝑅 ∈ CRing → ( ( 1o mVar ( 𝑅 ↾s 𝐵 ) ) ‘ ∅ ) = 𝑋 ) |
| 25 | 24 | fveq2d | ⊢ ( 𝑅 ∈ CRing → ( ( 1o eval 𝑅 ) ‘ ( ( 1o mVar ( 𝑅 ↾s 𝐵 ) ) ‘ ∅ ) ) = ( ( 1o eval 𝑅 ) ‘ 𝑋 ) ) |
| 26 | 9 3 | evlval | ⊢ ( 1o eval 𝑅 ) = ( ( 1o evalSub 𝑅 ) ‘ 𝐵 ) |
| 27 | eqid | ⊢ ( 1o mVar ( 𝑅 ↾s 𝐵 ) ) = ( 1o mVar ( 𝑅 ↾s 𝐵 ) ) | |
| 28 | eqid | ⊢ ( 𝑅 ↾s 𝐵 ) = ( 𝑅 ↾s 𝐵 ) | |
| 29 | 1on | ⊢ 1o ∈ On | |
| 30 | 29 | a1i | ⊢ ( 𝑅 ∈ CRing → 1o ∈ On ) |
| 31 | id | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ CRing ) | |
| 32 | 3 | subrgid | ⊢ ( 𝑅 ∈ Ring → 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) |
| 33 | 4 32 | syl | ⊢ ( 𝑅 ∈ CRing → 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) |
| 34 | 0lt1o | ⊢ ∅ ∈ 1o | |
| 35 | 34 | a1i | ⊢ ( 𝑅 ∈ CRing → ∅ ∈ 1o ) |
| 36 | 26 27 28 3 30 31 33 35 | evlsvar | ⊢ ( 𝑅 ∈ CRing → ( ( 1o eval 𝑅 ) ‘ ( ( 1o mVar ( 𝑅 ↾s 𝐵 ) ) ‘ ∅ ) ) = ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) ) |
| 37 | 25 36 | eqtr3d | ⊢ ( 𝑅 ∈ CRing → ( ( 1o eval 𝑅 ) ‘ 𝑋 ) = ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) ) |
| 38 | 37 | coeq1d | ⊢ ( 𝑅 ∈ CRing → ( ( ( 1o eval 𝑅 ) ‘ 𝑋 ) ∘ ◡ ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) ) = ( ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) ∘ ◡ ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) ) ) |
| 39 | 19 38 | eqtr3id | ⊢ ( 𝑅 ∈ CRing → ( ( ( 1o eval 𝑅 ) ‘ 𝑋 ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) = ( ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) ∘ ◡ ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) ) ) |
| 40 | 14 15 16 17 | mapsnf1o2 | ⊢ ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) : ( 𝐵 ↑m 1o ) –1-1-onto→ 𝐵 |
| 41 | f1ococnv2 | ⊢ ( ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) : ( 𝐵 ↑m 1o ) –1-1-onto→ 𝐵 → ( ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) ∘ ◡ ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) ) = ( I ↾ 𝐵 ) ) | |
| 42 | 40 41 | mp1i | ⊢ ( 𝑅 ∈ CRing → ( ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) ∘ ◡ ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) ) = ( I ↾ 𝐵 ) ) |
| 43 | 13 39 42 | 3eqtrd | ⊢ ( 𝑅 ∈ CRing → ( 𝑂 ‘ 𝑋 ) = ( I ↾ 𝐵 ) ) |