This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the univariate polynomial evaluation map. (Contributed by AV, 10-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evls1fval.q | ⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) | |
| evls1fval.e | ⊢ 𝐸 = ( 1o evalSub 𝑆 ) | ||
| evls1fval.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| evls1val.m | ⊢ 𝑀 = ( 1o mPoly ( 𝑆 ↾s 𝑅 ) ) | ||
| evls1val.k | ⊢ 𝐾 = ( Base ‘ 𝑀 ) | ||
| Assertion | evls1val | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ∧ 𝐴 ∈ 𝐾 ) → ( 𝑄 ‘ 𝐴 ) = ( ( ( 𝐸 ‘ 𝑅 ) ‘ 𝐴 ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1fval.q | ⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) | |
| 2 | evls1fval.e | ⊢ 𝐸 = ( 1o evalSub 𝑆 ) | |
| 3 | evls1fval.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 4 | evls1val.m | ⊢ 𝑀 = ( 1o mPoly ( 𝑆 ↾s 𝑅 ) ) | |
| 5 | evls1val.k | ⊢ 𝐾 = ( Base ‘ 𝑀 ) | |
| 6 | 3 | subrgss | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ⊆ 𝐵 ) |
| 7 | 6 | adantl | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑅 ⊆ 𝐵 ) |
| 8 | elpwg | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( 𝑅 ∈ 𝒫 𝐵 ↔ 𝑅 ⊆ 𝐵 ) ) | |
| 9 | 8 | adantl | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝑅 ∈ 𝒫 𝐵 ↔ 𝑅 ⊆ 𝐵 ) ) |
| 10 | 7 9 | mpbird | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑅 ∈ 𝒫 𝐵 ) |
| 11 | 1 2 3 | evls1fval | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ 𝒫 𝐵 ) → 𝑄 = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 𝐸 ‘ 𝑅 ) ) ) |
| 12 | 10 11 | syldan | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 𝐸 ‘ 𝑅 ) ) ) |
| 13 | 12 | fveq1d | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝑄 ‘ 𝐴 ) = ( ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 𝐸 ‘ 𝑅 ) ) ‘ 𝐴 ) ) |
| 14 | 13 | 3adant3 | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ∧ 𝐴 ∈ 𝐾 ) → ( 𝑄 ‘ 𝐴 ) = ( ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 𝐸 ‘ 𝑅 ) ) ‘ 𝐴 ) ) |
| 15 | 1on | ⊢ 1o ∈ On | |
| 16 | simp1 | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ∧ 𝐴 ∈ 𝐾 ) → 𝑆 ∈ CRing ) | |
| 17 | simp2 | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ∧ 𝐴 ∈ 𝐾 ) → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | |
| 18 | 2 | fveq1i | ⊢ ( 𝐸 ‘ 𝑅 ) = ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) |
| 19 | eqid | ⊢ ( 𝑆 ↾s 𝑅 ) = ( 𝑆 ↾s 𝑅 ) | |
| 20 | eqid | ⊢ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) = ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) | |
| 21 | 18 4 19 20 3 | evlsrhm | ⊢ ( ( 1o ∈ On ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝐸 ‘ 𝑅 ) ∈ ( 𝑀 RingHom ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
| 22 | 15 16 17 21 | mp3an2i | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ∧ 𝐴 ∈ 𝐾 ) → ( 𝐸 ‘ 𝑅 ) ∈ ( 𝑀 RingHom ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
| 23 | eqid | ⊢ ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) = ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) | |
| 24 | 5 23 | rhmf | ⊢ ( ( 𝐸 ‘ 𝑅 ) ∈ ( 𝑀 RingHom ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) → ( 𝐸 ‘ 𝑅 ) : 𝐾 ⟶ ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
| 25 | 22 24 | syl | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ∧ 𝐴 ∈ 𝐾 ) → ( 𝐸 ‘ 𝑅 ) : 𝐾 ⟶ ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
| 26 | simp3 | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ∧ 𝐴 ∈ 𝐾 ) → 𝐴 ∈ 𝐾 ) | |
| 27 | fvco3 | ⊢ ( ( ( 𝐸 ‘ 𝑅 ) : 𝐾 ⟶ ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ∧ 𝐴 ∈ 𝐾 ) → ( ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 𝐸 ‘ 𝑅 ) ) ‘ 𝐴 ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ‘ ( ( 𝐸 ‘ 𝑅 ) ‘ 𝐴 ) ) ) | |
| 28 | 25 26 27 | syl2anc | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ∧ 𝐴 ∈ 𝐾 ) → ( ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 𝐸 ‘ 𝑅 ) ) ‘ 𝐴 ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ‘ ( ( 𝐸 ‘ 𝑅 ) ‘ 𝐴 ) ) ) |
| 29 | 25 26 | ffvelcdmd | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ∧ 𝐴 ∈ 𝐾 ) → ( ( 𝐸 ‘ 𝑅 ) ‘ 𝐴 ) ∈ ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
| 30 | ovex | ⊢ ( 𝐵 ↑m 1o ) ∈ V | |
| 31 | 20 3 | pwsbas | ⊢ ( ( 𝑆 ∈ CRing ∧ ( 𝐵 ↑m 1o ) ∈ V ) → ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) = ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
| 32 | 16 30 31 | sylancl | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ∧ 𝐴 ∈ 𝐾 ) → ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) = ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
| 33 | 29 32 | eleqtrrd | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ∧ 𝐴 ∈ 𝐾 ) → ( ( 𝐸 ‘ 𝑅 ) ‘ 𝐴 ) ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ) |
| 34 | coeq1 | ⊢ ( 𝑥 = ( ( 𝐸 ‘ 𝑅 ) ‘ 𝐴 ) → ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) = ( ( ( 𝐸 ‘ 𝑅 ) ‘ 𝐴 ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) | |
| 35 | eqid | ⊢ ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) = ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) | |
| 36 | fvex | ⊢ ( ( 𝐸 ‘ 𝑅 ) ‘ 𝐴 ) ∈ V | |
| 37 | 3 | fvexi | ⊢ 𝐵 ∈ V |
| 38 | 37 | mptex | ⊢ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ∈ V |
| 39 | 36 38 | coex | ⊢ ( ( ( 𝐸 ‘ 𝑅 ) ‘ 𝐴 ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ∈ V |
| 40 | 34 35 39 | fvmpt | ⊢ ( ( ( 𝐸 ‘ 𝑅 ) ‘ 𝐴 ) ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) → ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ‘ ( ( 𝐸 ‘ 𝑅 ) ‘ 𝐴 ) ) = ( ( ( 𝐸 ‘ 𝑅 ) ‘ 𝐴 ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
| 41 | 33 40 | syl | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ∧ 𝐴 ∈ 𝐾 ) → ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ‘ ( ( 𝐸 ‘ 𝑅 ) ‘ 𝐴 ) ) = ( ( ( 𝐸 ‘ 𝑅 ) ‘ 𝐴 ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
| 42 | 14 28 41 | 3eqtrd | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ∧ 𝐴 ∈ 𝐾 ) → ( 𝑄 ‘ 𝐴 ) = ( ( ( 𝐸 ‘ 𝑅 ) ‘ 𝐴 ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |