This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the simple/same ring evaluation map. (Contributed by Mario Carneiro, 12-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evl1fval.o | ⊢ 𝑂 = ( eval1 ‘ 𝑅 ) | |
| evl1fval.q | ⊢ 𝑄 = ( 1o eval 𝑅 ) | ||
| evl1fval.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| evl1val.m | ⊢ 𝑀 = ( 1o mPoly 𝑅 ) | ||
| evl1val.k | ⊢ 𝐾 = ( Base ‘ 𝑀 ) | ||
| Assertion | evl1val | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾 ) → ( 𝑂 ‘ 𝐴 ) = ( ( 𝑄 ‘ 𝐴 ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1fval.o | ⊢ 𝑂 = ( eval1 ‘ 𝑅 ) | |
| 2 | evl1fval.q | ⊢ 𝑄 = ( 1o eval 𝑅 ) | |
| 3 | evl1fval.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 4 | evl1val.m | ⊢ 𝑀 = ( 1o mPoly 𝑅 ) | |
| 5 | evl1val.k | ⊢ 𝐾 = ( Base ‘ 𝑀 ) | |
| 6 | 1 2 3 | evl1fval | ⊢ 𝑂 = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ 𝑄 ) |
| 7 | 6 | fveq1i | ⊢ ( 𝑂 ‘ 𝐴 ) = ( ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ 𝑄 ) ‘ 𝐴 ) |
| 8 | 1on | ⊢ 1o ∈ On | |
| 9 | simpl | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾 ) → 𝑅 ∈ CRing ) | |
| 10 | eqid | ⊢ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) = ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) | |
| 11 | 2 3 4 10 | evlrhm | ⊢ ( ( 1o ∈ On ∧ 𝑅 ∈ CRing ) → 𝑄 ∈ ( 𝑀 RingHom ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
| 12 | 8 9 11 | sylancr | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾 ) → 𝑄 ∈ ( 𝑀 RingHom ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
| 13 | eqid | ⊢ ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) = ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) | |
| 14 | 5 13 | rhmf | ⊢ ( 𝑄 ∈ ( 𝑀 RingHom ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) → 𝑄 : 𝐾 ⟶ ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
| 15 | 12 14 | syl | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾 ) → 𝑄 : 𝐾 ⟶ ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
| 16 | fvco3 | ⊢ ( ( 𝑄 : 𝐾 ⟶ ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ∧ 𝐴 ∈ 𝐾 ) → ( ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ 𝑄 ) ‘ 𝐴 ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ‘ ( 𝑄 ‘ 𝐴 ) ) ) | |
| 17 | 15 16 | sylancom | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾 ) → ( ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ 𝑄 ) ‘ 𝐴 ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ‘ ( 𝑄 ‘ 𝐴 ) ) ) |
| 18 | 7 17 | eqtrid | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾 ) → ( 𝑂 ‘ 𝐴 ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ‘ ( 𝑄 ‘ 𝐴 ) ) ) |
| 19 | ffvelcdm | ⊢ ( ( 𝑄 : 𝐾 ⟶ ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ∧ 𝐴 ∈ 𝐾 ) → ( 𝑄 ‘ 𝐴 ) ∈ ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) | |
| 20 | 15 19 | sylancom | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾 ) → ( 𝑄 ‘ 𝐴 ) ∈ ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
| 21 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 22 | 21 | adantr | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾 ) → 𝑅 ∈ Ring ) |
| 23 | ovex | ⊢ ( 𝐵 ↑m 1o ) ∈ V | |
| 24 | 10 3 | pwsbas | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐵 ↑m 1o ) ∈ V ) → ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) = ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
| 25 | 22 23 24 | sylancl | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾 ) → ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) = ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
| 26 | 20 25 | eleqtrrd | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾 ) → ( 𝑄 ‘ 𝐴 ) ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ) |
| 27 | coeq1 | ⊢ ( 𝑥 = ( 𝑄 ‘ 𝐴 ) → ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) = ( ( 𝑄 ‘ 𝐴 ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) | |
| 28 | eqid | ⊢ ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) = ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) | |
| 29 | fvex | ⊢ ( 𝑄 ‘ 𝐴 ) ∈ V | |
| 30 | 3 | fvexi | ⊢ 𝐵 ∈ V |
| 31 | 30 | mptex | ⊢ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ∈ V |
| 32 | 29 31 | coex | ⊢ ( ( 𝑄 ‘ 𝐴 ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ∈ V |
| 33 | 27 28 32 | fvmpt | ⊢ ( ( 𝑄 ‘ 𝐴 ) ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) → ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ‘ ( 𝑄 ‘ 𝐴 ) ) = ( ( 𝑄 ‘ 𝐴 ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
| 34 | 26 33 | syl | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾 ) → ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ‘ ( 𝑄 ‘ 𝐴 ) ) = ( ( 𝑄 ‘ 𝐴 ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
| 35 | 18 34 | eqtrd | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾 ) → ( 𝑂 ‘ 𝐴 ) = ( ( 𝑄 ‘ 𝐴 ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |