This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the univariate polynomial evaluation map function. (Contributed by AV, 7-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evls1fval.q | ⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) | |
| evls1fval.e | ⊢ 𝐸 = ( 1o evalSub 𝑆 ) | ||
| evls1fval.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| Assertion | evls1fval | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑅 ∈ 𝒫 𝐵 ) → 𝑄 = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 𝐸 ‘ 𝑅 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1fval.q | ⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) | |
| 2 | evls1fval.e | ⊢ 𝐸 = ( 1o evalSub 𝑆 ) | |
| 3 | evls1fval.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 4 | elex | ⊢ ( 𝑆 ∈ 𝑉 → 𝑆 ∈ V ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑅 ∈ 𝒫 𝐵 ) → 𝑆 ∈ V ) |
| 6 | simpr | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑅 ∈ 𝒫 𝐵 ) → 𝑅 ∈ 𝒫 𝐵 ) | |
| 7 | ovex | ⊢ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ∈ V | |
| 8 | 7 | mptex | ⊢ ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∈ V |
| 9 | fvex | ⊢ ( 𝐸 ‘ 𝑅 ) ∈ V | |
| 10 | 8 9 | coex | ⊢ ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 𝐸 ‘ 𝑅 ) ) ∈ V |
| 11 | 10 | a1i | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑅 ∈ 𝒫 𝐵 ) → ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 𝐸 ‘ 𝑅 ) ) ∈ V ) |
| 12 | fveq2 | ⊢ ( 𝑠 = 𝑆 → ( Base ‘ 𝑠 ) = ( Base ‘ 𝑆 ) ) | |
| 13 | 12 | adantr | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ( Base ‘ 𝑠 ) = ( Base ‘ 𝑆 ) ) |
| 14 | 13 3 | eqtr4di | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ( Base ‘ 𝑠 ) = 𝐵 ) |
| 15 | 14 | csbeq1d | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ( ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑠 ) ‘ 𝑟 ) ) = ⦋ 𝐵 / 𝑏 ⦌ ( ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑠 ) ‘ 𝑟 ) ) ) |
| 16 | 3 | fvexi | ⊢ 𝐵 ∈ V |
| 17 | 16 | a1i | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → 𝐵 ∈ V ) |
| 18 | id | ⊢ ( 𝑏 = 𝐵 → 𝑏 = 𝐵 ) | |
| 19 | oveq1 | ⊢ ( 𝑏 = 𝐵 → ( 𝑏 ↑m 1o ) = ( 𝐵 ↑m 1o ) ) | |
| 20 | 18 19 | oveq12d | ⊢ ( 𝑏 = 𝐵 → ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) = ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ) |
| 21 | mpteq1 | ⊢ ( 𝑏 = 𝐵 → ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) = ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) | |
| 22 | 21 | coeq2d | ⊢ ( 𝑏 = 𝐵 → ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) = ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
| 23 | 20 22 | mpteq12dv | ⊢ ( 𝑏 = 𝐵 → ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) = ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ) |
| 24 | 23 | coeq1d | ⊢ ( 𝑏 = 𝐵 → ( ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑠 ) ‘ 𝑟 ) ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑠 ) ‘ 𝑟 ) ) ) |
| 25 | 24 | adantl | ⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) ∧ 𝑏 = 𝐵 ) → ( ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑠 ) ‘ 𝑟 ) ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑠 ) ‘ 𝑟 ) ) ) |
| 26 | 17 25 | csbied | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ⦋ 𝐵 / 𝑏 ⦌ ( ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑠 ) ‘ 𝑟 ) ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑠 ) ‘ 𝑟 ) ) ) |
| 27 | oveq2 | ⊢ ( 𝑠 = 𝑆 → ( 1o evalSub 𝑠 ) = ( 1o evalSub 𝑆 ) ) | |
| 28 | 27 2 | eqtr4di | ⊢ ( 𝑠 = 𝑆 → ( 1o evalSub 𝑠 ) = 𝐸 ) |
| 29 | 28 | adantr | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ( 1o evalSub 𝑠 ) = 𝐸 ) |
| 30 | simpr | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → 𝑟 = 𝑅 ) | |
| 31 | 29 30 | fveq12d | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ( ( 1o evalSub 𝑠 ) ‘ 𝑟 ) = ( 𝐸 ‘ 𝑅 ) ) |
| 32 | 31 | coeq2d | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑠 ) ‘ 𝑟 ) ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 𝐸 ‘ 𝑅 ) ) ) |
| 33 | 15 26 32 | 3eqtrd | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ( ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑠 ) ‘ 𝑟 ) ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 𝐸 ‘ 𝑅 ) ) ) |
| 34 | 12 3 | eqtr4di | ⊢ ( 𝑠 = 𝑆 → ( Base ‘ 𝑠 ) = 𝐵 ) |
| 35 | 34 | pweqd | ⊢ ( 𝑠 = 𝑆 → 𝒫 ( Base ‘ 𝑠 ) = 𝒫 𝐵 ) |
| 36 | df-evls1 | ⊢ evalSub1 = ( 𝑠 ∈ V , 𝑟 ∈ 𝒫 ( Base ‘ 𝑠 ) ↦ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ( ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑠 ) ‘ 𝑟 ) ) ) | |
| 37 | 33 35 36 | ovmpox | ⊢ ( ( 𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 𝐵 ∧ ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 𝐸 ‘ 𝑅 ) ) ∈ V ) → ( 𝑆 evalSub1 𝑅 ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 𝐸 ‘ 𝑅 ) ) ) |
| 38 | 5 6 11 37 | syl3anc | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑅 ∈ 𝒫 𝐵 ) → ( 𝑆 evalSub1 𝑅 ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 𝐸 ‘ 𝑅 ) ) ) |
| 39 | 1 38 | eqtrid | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑅 ∈ 𝒫 𝐵 ) → 𝑄 = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 𝐸 ‘ 𝑅 ) ) ) |