This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The univariate polynomial ring inherits the multivariate ring's scalar function. (Contributed by Stefan O'Rear, 28-Mar-2015) (Proof shortened by Fan Zheng, 26-Jun-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1ascl.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| ply1ascl.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | ||
| Assertion | ply1ascl | ⊢ 𝐴 = ( algSc ‘ ( 1o mPoly 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1ascl.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 2 | ply1ascl.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | |
| 3 | eqid | ⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) | |
| 4 | eqid | ⊢ ( Scalar ‘ ( 1o mPoly 𝑅 ) ) = ( Scalar ‘ ( 1o mPoly 𝑅 ) ) | |
| 5 | 1 | ply1sca | ⊢ ( 𝑅 ∈ V → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 6 | 5 | fveq2d | ⊢ ( 𝑅 ∈ V → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 7 | eqid | ⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) | |
| 8 | 1on | ⊢ 1o ∈ On | |
| 9 | 8 | a1i | ⊢ ( 𝑅 ∈ V → 1o ∈ On ) |
| 10 | id | ⊢ ( 𝑅 ∈ V → 𝑅 ∈ V ) | |
| 11 | 7 9 10 | mplsca | ⊢ ( 𝑅 ∈ V → 𝑅 = ( Scalar ‘ ( 1o mPoly 𝑅 ) ) ) |
| 12 | 11 | fveq2d | ⊢ ( 𝑅 ∈ V → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ ( 1o mPoly 𝑅 ) ) ) ) |
| 13 | eqid | ⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) | |
| 14 | 1 7 13 | ply1vsca | ⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ ( 1o mPoly 𝑅 ) ) |
| 15 | 14 | a1i | ⊢ ( 𝑅 ∈ V → ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ ( 1o mPoly 𝑅 ) ) ) |
| 16 | 15 | oveqdr | ⊢ ( ( 𝑅 ∈ V ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ V ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑃 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ ( 1o mPoly 𝑅 ) ) 𝑦 ) ) |
| 17 | eqid | ⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) | |
| 18 | 7 1 17 | ply1mpl1 | ⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ ( 1o mPoly 𝑅 ) ) |
| 19 | 18 | a1i | ⊢ ( 𝑅 ∈ V → ( 1r ‘ 𝑃 ) = ( 1r ‘ ( 1o mPoly 𝑅 ) ) ) |
| 20 | fvexd | ⊢ ( 𝑅 ∈ V → ( 1r ‘ 𝑃 ) ∈ V ) | |
| 21 | 3 4 6 12 16 19 20 | asclpropd | ⊢ ( 𝑅 ∈ V → ( algSc ‘ 𝑃 ) = ( algSc ‘ ( 1o mPoly 𝑅 ) ) ) |
| 22 | fvprc | ⊢ ( ¬ 𝑅 ∈ V → ( Poly1 ‘ 𝑅 ) = ∅ ) | |
| 23 | 1 22 | eqtrid | ⊢ ( ¬ 𝑅 ∈ V → 𝑃 = ∅ ) |
| 24 | reldmmpl | ⊢ Rel dom mPoly | |
| 25 | 24 | ovprc2 | ⊢ ( ¬ 𝑅 ∈ V → ( 1o mPoly 𝑅 ) = ∅ ) |
| 26 | 23 25 | eqtr4d | ⊢ ( ¬ 𝑅 ∈ V → 𝑃 = ( 1o mPoly 𝑅 ) ) |
| 27 | 26 | fveq2d | ⊢ ( ¬ 𝑅 ∈ V → ( algSc ‘ 𝑃 ) = ( algSc ‘ ( 1o mPoly 𝑅 ) ) ) |
| 28 | 21 27 | pm2.61i | ⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ ( 1o mPoly 𝑅 ) ) |
| 29 | 2 28 | eqtri | ⊢ 𝐴 = ( algSc ‘ ( 1o mPoly 𝑅 ) ) |