This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial evaluation maps scalars to constant functions. (Contributed by Mario Carneiro, 12-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evl1sca.o | ⊢ 𝑂 = ( eval1 ‘ 𝑅 ) | |
| evl1sca.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | ||
| evl1sca.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| evl1sca.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | ||
| Assertion | evl1sca | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( 𝑂 ‘ ( 𝐴 ‘ 𝑋 ) ) = ( 𝐵 × { 𝑋 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1sca.o | ⊢ 𝑂 = ( eval1 ‘ 𝑅 ) | |
| 2 | evl1sca.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 3 | evl1sca.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 4 | evl1sca.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | |
| 5 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
| 7 | eqid | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) | |
| 8 | 2 4 3 7 | ply1sclf | ⊢ ( 𝑅 ∈ Ring → 𝐴 : 𝐵 ⟶ ( Base ‘ 𝑃 ) ) |
| 9 | 6 8 | syl | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → 𝐴 : 𝐵 ⟶ ( Base ‘ 𝑃 ) ) |
| 10 | ffvelcdm | ⊢ ( ( 𝐴 : 𝐵 ⟶ ( Base ‘ 𝑃 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐴 ‘ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) | |
| 11 | 9 10 | sylancom | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( 𝐴 ‘ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
| 12 | eqid | ⊢ ( 1o eval 𝑅 ) = ( 1o eval 𝑅 ) | |
| 13 | eqid | ⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) | |
| 14 | 2 7 | ply1bas | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
| 15 | 1 12 3 13 14 | evl1val | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝐴 ‘ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) → ( 𝑂 ‘ ( 𝐴 ‘ 𝑋 ) ) = ( ( ( 1o eval 𝑅 ) ‘ ( 𝐴 ‘ 𝑋 ) ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
| 16 | 11 15 | syldan | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( 𝑂 ‘ ( 𝐴 ‘ 𝑋 ) ) = ( ( ( 1o eval 𝑅 ) ‘ ( 𝐴 ‘ 𝑋 ) ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
| 17 | 2 4 | ply1ascl | ⊢ 𝐴 = ( algSc ‘ ( 1o mPoly 𝑅 ) ) |
| 18 | 3 | ressid | ⊢ ( 𝑅 ∈ CRing → ( 𝑅 ↾s 𝐵 ) = 𝑅 ) |
| 19 | 18 | adantr | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( 𝑅 ↾s 𝐵 ) = 𝑅 ) |
| 20 | 19 | oveq2d | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( 1o mPoly ( 𝑅 ↾s 𝐵 ) ) = ( 1o mPoly 𝑅 ) ) |
| 21 | 20 | fveq2d | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( algSc ‘ ( 1o mPoly ( 𝑅 ↾s 𝐵 ) ) ) = ( algSc ‘ ( 1o mPoly 𝑅 ) ) ) |
| 22 | 17 21 | eqtr4id | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → 𝐴 = ( algSc ‘ ( 1o mPoly ( 𝑅 ↾s 𝐵 ) ) ) ) |
| 23 | 22 | fveq1d | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( 𝐴 ‘ 𝑋 ) = ( ( algSc ‘ ( 1o mPoly ( 𝑅 ↾s 𝐵 ) ) ) ‘ 𝑋 ) ) |
| 24 | 23 | fveq2d | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( ( 1o eval 𝑅 ) ‘ ( 𝐴 ‘ 𝑋 ) ) = ( ( 1o eval 𝑅 ) ‘ ( ( algSc ‘ ( 1o mPoly ( 𝑅 ↾s 𝐵 ) ) ) ‘ 𝑋 ) ) ) |
| 25 | 12 3 | evlval | ⊢ ( 1o eval 𝑅 ) = ( ( 1o evalSub 𝑅 ) ‘ 𝐵 ) |
| 26 | eqid | ⊢ ( 1o mPoly ( 𝑅 ↾s 𝐵 ) ) = ( 1o mPoly ( 𝑅 ↾s 𝐵 ) ) | |
| 27 | eqid | ⊢ ( 𝑅 ↾s 𝐵 ) = ( 𝑅 ↾s 𝐵 ) | |
| 28 | eqid | ⊢ ( algSc ‘ ( 1o mPoly ( 𝑅 ↾s 𝐵 ) ) ) = ( algSc ‘ ( 1o mPoly ( 𝑅 ↾s 𝐵 ) ) ) | |
| 29 | 1on | ⊢ 1o ∈ On | |
| 30 | 29 | a1i | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → 1o ∈ On ) |
| 31 | simpl | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → 𝑅 ∈ CRing ) | |
| 32 | 3 | subrgid | ⊢ ( 𝑅 ∈ Ring → 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) |
| 33 | 6 32 | syl | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) |
| 34 | simpr | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 35 | 25 26 27 3 28 30 31 33 34 | evlssca | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( ( 1o eval 𝑅 ) ‘ ( ( algSc ‘ ( 1o mPoly ( 𝑅 ↾s 𝐵 ) ) ) ‘ 𝑋 ) ) = ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ) |
| 36 | 24 35 | eqtrd | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( ( 1o eval 𝑅 ) ‘ ( 𝐴 ‘ 𝑋 ) ) = ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ) |
| 37 | 36 | coeq1d | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( ( ( 1o eval 𝑅 ) ‘ ( 𝐴 ‘ 𝑋 ) ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) = ( ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
| 38 | df1o2 | ⊢ 1o = { ∅ } | |
| 39 | 3 | fvexi | ⊢ 𝐵 ∈ V |
| 40 | 0ex | ⊢ ∅ ∈ V | |
| 41 | eqid | ⊢ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) = ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) | |
| 42 | 38 39 40 41 | mapsnf1o3 | ⊢ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) : 𝐵 –1-1-onto→ ( 𝐵 ↑m 1o ) |
| 43 | f1of | ⊢ ( ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) : 𝐵 –1-1-onto→ ( 𝐵 ↑m 1o ) → ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) : 𝐵 ⟶ ( 𝐵 ↑m 1o ) ) | |
| 44 | 42 43 | mp1i | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) : 𝐵 ⟶ ( 𝐵 ↑m 1o ) ) |
| 45 | 41 | fmpt | ⊢ ( ∀ 𝑦 ∈ 𝐵 ( 1o × { 𝑦 } ) ∈ ( 𝐵 ↑m 1o ) ↔ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) : 𝐵 ⟶ ( 𝐵 ↑m 1o ) ) |
| 46 | 44 45 | sylibr | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ∀ 𝑦 ∈ 𝐵 ( 1o × { 𝑦 } ) ∈ ( 𝐵 ↑m 1o ) ) |
| 47 | eqidd | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) = ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) | |
| 48 | fconstmpt | ⊢ ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) = ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ 𝑋 ) | |
| 49 | 48 | a1i | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) = ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ 𝑋 ) ) |
| 50 | eqidd | ⊢ ( 𝑥 = ( 1o × { 𝑦 } ) → 𝑋 = 𝑋 ) | |
| 51 | 46 47 49 50 | fmptcof | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) = ( 𝑦 ∈ 𝐵 ↦ 𝑋 ) ) |
| 52 | fconstmpt | ⊢ ( 𝐵 × { 𝑋 } ) = ( 𝑦 ∈ 𝐵 ↦ 𝑋 ) | |
| 53 | 51 52 | eqtr4di | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) = ( 𝐵 × { 𝑋 } ) ) |
| 54 | 16 37 53 | 3eqtrd | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( 𝑂 ‘ ( 𝐴 ‘ 𝑋 ) ) = ( 𝐵 × { 𝑋 } ) ) |