This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial evaluation builder for scalars. (Contributed by Mario Carneiro, 4-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evl1sca.o | ⊢ 𝑂 = ( eval1 ‘ 𝑅 ) | |
| evl1sca.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | ||
| evl1sca.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| evl1sca.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | ||
| evl1scad.u | ⊢ 𝑈 = ( Base ‘ 𝑃 ) | ||
| evl1scad.1 | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| evl1scad.2 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| evl1scad.3 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | evl1scad | ⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝑋 ) ∈ 𝑈 ∧ ( ( 𝑂 ‘ ( 𝐴 ‘ 𝑋 ) ) ‘ 𝑌 ) = 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1sca.o | ⊢ 𝑂 = ( eval1 ‘ 𝑅 ) | |
| 2 | evl1sca.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 3 | evl1sca.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 4 | evl1sca.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | |
| 5 | evl1scad.u | ⊢ 𝑈 = ( Base ‘ 𝑃 ) | |
| 6 | evl1scad.1 | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 7 | evl1scad.2 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 8 | evl1scad.3 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 9 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 10 | 2 4 3 5 | ply1sclf | ⊢ ( 𝑅 ∈ Ring → 𝐴 : 𝐵 ⟶ 𝑈 ) |
| 11 | 6 9 10 | 3syl | ⊢ ( 𝜑 → 𝐴 : 𝐵 ⟶ 𝑈 ) |
| 12 | 11 7 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐴 ‘ 𝑋 ) ∈ 𝑈 ) |
| 13 | 1 2 3 4 | evl1sca | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( 𝑂 ‘ ( 𝐴 ‘ 𝑋 ) ) = ( 𝐵 × { 𝑋 } ) ) |
| 14 | 6 7 13 | syl2anc | ⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ‘ 𝑋 ) ) = ( 𝐵 × { 𝑋 } ) ) |
| 15 | 14 | fveq1d | ⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝐴 ‘ 𝑋 ) ) ‘ 𝑌 ) = ( ( 𝐵 × { 𝑋 } ) ‘ 𝑌 ) ) |
| 16 | fvconst2g | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝐵 × { 𝑋 } ) ‘ 𝑌 ) = 𝑋 ) | |
| 17 | 7 8 16 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐵 × { 𝑋 } ) ‘ 𝑌 ) = 𝑋 ) |
| 18 | 15 17 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝐴 ‘ 𝑋 ) ) ‘ 𝑌 ) = 𝑋 ) |
| 19 | 12 18 | jca | ⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝑋 ) ∈ 𝑈 ∧ ( ( 𝑂 ‘ ( 𝐴 ‘ 𝑋 ) ) ‘ 𝑌 ) = 𝑋 ) ) |