This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the simple/same ring evaluation map. (Contributed by Stefan O'Rear, 19-Mar-2015) (Revised by Mario Carneiro, 12-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlval.q | ⊢ 𝑄 = ( 𝐼 eval 𝑅 ) | |
| evlval.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| Assertion | evlval | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑅 ) ‘ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlval.q | ⊢ 𝑄 = ( 𝐼 eval 𝑅 ) | |
| 2 | evlval.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | oveq12 | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 𝑖 evalSub 𝑟 ) = ( 𝐼 evalSub 𝑅 ) ) | |
| 4 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) | |
| 5 | 4 2 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = 𝐵 ) |
| 6 | 5 | adantl | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( Base ‘ 𝑟 ) = 𝐵 ) |
| 7 | 3 6 | fveq12d | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( ( 𝑖 evalSub 𝑟 ) ‘ ( Base ‘ 𝑟 ) ) = ( ( 𝐼 evalSub 𝑅 ) ‘ 𝐵 ) ) |
| 8 | df-evl | ⊢ eval = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( ( 𝑖 evalSub 𝑟 ) ‘ ( Base ‘ 𝑟 ) ) ) | |
| 9 | fvex | ⊢ ( ( 𝐼 evalSub 𝑅 ) ‘ 𝐵 ) ∈ V | |
| 10 | 7 8 9 | ovmpoa | ⊢ ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐼 eval 𝑅 ) = ( ( 𝐼 evalSub 𝑅 ) ‘ 𝐵 ) ) |
| 11 | 8 | mpondm0 | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐼 eval 𝑅 ) = ∅ ) |
| 12 | 0fv | ⊢ ( ∅ ‘ 𝐵 ) = ∅ | |
| 13 | 11 12 | eqtr4di | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐼 eval 𝑅 ) = ( ∅ ‘ 𝐵 ) ) |
| 14 | reldmevls | ⊢ Rel dom evalSub | |
| 15 | 14 | ovprc | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐼 evalSub 𝑅 ) = ∅ ) |
| 16 | 15 | fveq1d | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( ( 𝐼 evalSub 𝑅 ) ‘ 𝐵 ) = ( ∅ ‘ 𝐵 ) ) |
| 17 | 13 16 | eqtr4d | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐼 eval 𝑅 ) = ( ( 𝐼 evalSub 𝑅 ) ‘ 𝐵 ) ) |
| 18 | 10 17 | pm2.61i | ⊢ ( 𝐼 eval 𝑅 ) = ( ( 𝐼 evalSub 𝑅 ) ‘ 𝐵 ) |
| 19 | 1 18 | eqtri | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑅 ) ‘ 𝐵 ) |