This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial evaluation maps scalars to constant functions. (Contributed by Mario Carneiro, 12-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evl1sca.o | |- O = ( eval1 ` R ) |
|
| evl1sca.p | |- P = ( Poly1 ` R ) |
||
| evl1sca.b | |- B = ( Base ` R ) |
||
| evl1sca.a | |- A = ( algSc ` P ) |
||
| Assertion | evl1sca | |- ( ( R e. CRing /\ X e. B ) -> ( O ` ( A ` X ) ) = ( B X. { X } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1sca.o | |- O = ( eval1 ` R ) |
|
| 2 | evl1sca.p | |- P = ( Poly1 ` R ) |
|
| 3 | evl1sca.b | |- B = ( Base ` R ) |
|
| 4 | evl1sca.a | |- A = ( algSc ` P ) |
|
| 5 | crngring | |- ( R e. CRing -> R e. Ring ) |
|
| 6 | 5 | adantr | |- ( ( R e. CRing /\ X e. B ) -> R e. Ring ) |
| 7 | eqid | |- ( Base ` P ) = ( Base ` P ) |
|
| 8 | 2 4 3 7 | ply1sclf | |- ( R e. Ring -> A : B --> ( Base ` P ) ) |
| 9 | 6 8 | syl | |- ( ( R e. CRing /\ X e. B ) -> A : B --> ( Base ` P ) ) |
| 10 | ffvelcdm | |- ( ( A : B --> ( Base ` P ) /\ X e. B ) -> ( A ` X ) e. ( Base ` P ) ) |
|
| 11 | 9 10 | sylancom | |- ( ( R e. CRing /\ X e. B ) -> ( A ` X ) e. ( Base ` P ) ) |
| 12 | eqid | |- ( 1o eval R ) = ( 1o eval R ) |
|
| 13 | eqid | |- ( 1o mPoly R ) = ( 1o mPoly R ) |
|
| 14 | 2 7 | ply1bas | |- ( Base ` P ) = ( Base ` ( 1o mPoly R ) ) |
| 15 | 1 12 3 13 14 | evl1val | |- ( ( R e. CRing /\ ( A ` X ) e. ( Base ` P ) ) -> ( O ` ( A ` X ) ) = ( ( ( 1o eval R ) ` ( A ` X ) ) o. ( y e. B |-> ( 1o X. { y } ) ) ) ) |
| 16 | 11 15 | syldan | |- ( ( R e. CRing /\ X e. B ) -> ( O ` ( A ` X ) ) = ( ( ( 1o eval R ) ` ( A ` X ) ) o. ( y e. B |-> ( 1o X. { y } ) ) ) ) |
| 17 | 2 4 | ply1ascl | |- A = ( algSc ` ( 1o mPoly R ) ) |
| 18 | 3 | ressid | |- ( R e. CRing -> ( R |`s B ) = R ) |
| 19 | 18 | adantr | |- ( ( R e. CRing /\ X e. B ) -> ( R |`s B ) = R ) |
| 20 | 19 | oveq2d | |- ( ( R e. CRing /\ X e. B ) -> ( 1o mPoly ( R |`s B ) ) = ( 1o mPoly R ) ) |
| 21 | 20 | fveq2d | |- ( ( R e. CRing /\ X e. B ) -> ( algSc ` ( 1o mPoly ( R |`s B ) ) ) = ( algSc ` ( 1o mPoly R ) ) ) |
| 22 | 17 21 | eqtr4id | |- ( ( R e. CRing /\ X e. B ) -> A = ( algSc ` ( 1o mPoly ( R |`s B ) ) ) ) |
| 23 | 22 | fveq1d | |- ( ( R e. CRing /\ X e. B ) -> ( A ` X ) = ( ( algSc ` ( 1o mPoly ( R |`s B ) ) ) ` X ) ) |
| 24 | 23 | fveq2d | |- ( ( R e. CRing /\ X e. B ) -> ( ( 1o eval R ) ` ( A ` X ) ) = ( ( 1o eval R ) ` ( ( algSc ` ( 1o mPoly ( R |`s B ) ) ) ` X ) ) ) |
| 25 | 12 3 | evlval | |- ( 1o eval R ) = ( ( 1o evalSub R ) ` B ) |
| 26 | eqid | |- ( 1o mPoly ( R |`s B ) ) = ( 1o mPoly ( R |`s B ) ) |
|
| 27 | eqid | |- ( R |`s B ) = ( R |`s B ) |
|
| 28 | eqid | |- ( algSc ` ( 1o mPoly ( R |`s B ) ) ) = ( algSc ` ( 1o mPoly ( R |`s B ) ) ) |
|
| 29 | 1on | |- 1o e. On |
|
| 30 | 29 | a1i | |- ( ( R e. CRing /\ X e. B ) -> 1o e. On ) |
| 31 | simpl | |- ( ( R e. CRing /\ X e. B ) -> R e. CRing ) |
|
| 32 | 3 | subrgid | |- ( R e. Ring -> B e. ( SubRing ` R ) ) |
| 33 | 6 32 | syl | |- ( ( R e. CRing /\ X e. B ) -> B e. ( SubRing ` R ) ) |
| 34 | simpr | |- ( ( R e. CRing /\ X e. B ) -> X e. B ) |
|
| 35 | 25 26 27 3 28 30 31 33 34 | evlssca | |- ( ( R e. CRing /\ X e. B ) -> ( ( 1o eval R ) ` ( ( algSc ` ( 1o mPoly ( R |`s B ) ) ) ` X ) ) = ( ( B ^m 1o ) X. { X } ) ) |
| 36 | 24 35 | eqtrd | |- ( ( R e. CRing /\ X e. B ) -> ( ( 1o eval R ) ` ( A ` X ) ) = ( ( B ^m 1o ) X. { X } ) ) |
| 37 | 36 | coeq1d | |- ( ( R e. CRing /\ X e. B ) -> ( ( ( 1o eval R ) ` ( A ` X ) ) o. ( y e. B |-> ( 1o X. { y } ) ) ) = ( ( ( B ^m 1o ) X. { X } ) o. ( y e. B |-> ( 1o X. { y } ) ) ) ) |
| 38 | df1o2 | |- 1o = { (/) } |
|
| 39 | 3 | fvexi | |- B e. _V |
| 40 | 0ex | |- (/) e. _V |
|
| 41 | eqid | |- ( y e. B |-> ( 1o X. { y } ) ) = ( y e. B |-> ( 1o X. { y } ) ) |
|
| 42 | 38 39 40 41 | mapsnf1o3 | |- ( y e. B |-> ( 1o X. { y } ) ) : B -1-1-onto-> ( B ^m 1o ) |
| 43 | f1of | |- ( ( y e. B |-> ( 1o X. { y } ) ) : B -1-1-onto-> ( B ^m 1o ) -> ( y e. B |-> ( 1o X. { y } ) ) : B --> ( B ^m 1o ) ) |
|
| 44 | 42 43 | mp1i | |- ( ( R e. CRing /\ X e. B ) -> ( y e. B |-> ( 1o X. { y } ) ) : B --> ( B ^m 1o ) ) |
| 45 | 41 | fmpt | |- ( A. y e. B ( 1o X. { y } ) e. ( B ^m 1o ) <-> ( y e. B |-> ( 1o X. { y } ) ) : B --> ( B ^m 1o ) ) |
| 46 | 44 45 | sylibr | |- ( ( R e. CRing /\ X e. B ) -> A. y e. B ( 1o X. { y } ) e. ( B ^m 1o ) ) |
| 47 | eqidd | |- ( ( R e. CRing /\ X e. B ) -> ( y e. B |-> ( 1o X. { y } ) ) = ( y e. B |-> ( 1o X. { y } ) ) ) |
|
| 48 | fconstmpt | |- ( ( B ^m 1o ) X. { X } ) = ( x e. ( B ^m 1o ) |-> X ) |
|
| 49 | 48 | a1i | |- ( ( R e. CRing /\ X e. B ) -> ( ( B ^m 1o ) X. { X } ) = ( x e. ( B ^m 1o ) |-> X ) ) |
| 50 | eqidd | |- ( x = ( 1o X. { y } ) -> X = X ) |
|
| 51 | 46 47 49 50 | fmptcof | |- ( ( R e. CRing /\ X e. B ) -> ( ( ( B ^m 1o ) X. { X } ) o. ( y e. B |-> ( 1o X. { y } ) ) ) = ( y e. B |-> X ) ) |
| 52 | fconstmpt | |- ( B X. { X } ) = ( y e. B |-> X ) |
|
| 53 | 51 52 | eqtr4di | |- ( ( R e. CRing /\ X e. B ) -> ( ( ( B ^m 1o ) X. { X } ) o. ( y e. B |-> ( 1o X. { y } ) ) ) = ( B X. { X } ) ) |
| 54 | 16 37 53 | 3eqtrd | |- ( ( R e. CRing /\ X e. B ) -> ( O ` ( A ` X ) ) = ( B X. { X } ) ) |